1. Macosko, Evan Z., et al. Highly Parallel Genome-wide Expression Profiling of Individual Cells Using Nanoliter Droplets. Cell 161, 1202-1214 (2015).
2. Zilionis, R., et al. Single-cell barcoding and sequencing using droplet microfluidics. Nat Protoc 12, 44-73 (2017).
3. Zheng, G.X.Y., et al. Massively parallel digital transcriptional profiling of single cells. 8, 14049 (2017).
4. Haber, A.L., et al. A single-cell survey of the small intestinal epithelium. Nature 551, 333 (2017).
5. Wang, Y., et al. Pulmonary alveolar type I cell population consists of two distinct subtypes that differ in cell fate. Proceedings of the National Academy of Sciences 115, 2407-2412 (2018).
6. Sathyamurthy, A., et al. Massively Parallel Single Nucleus Transcriptional Profiling Defines Spinal Cord Neurons and Their Activity during Behavior. Cell reports 22, 2216-2225 (2018).
7. Hrvatin, S., et al. Single-cell analysis of experience-dependent transcriptomic states in the mouse visual cortex. Nature neuroscience 21, 120-129 (2018).
8. Hochgerner, H., Zeisel, A., Lönnerberg, P. & Linnarsson, S. Conserved properties of dentate gyrus neurogenesis across postnatal development revealed by single-cell RNA sequencing. Nature neuroscience 21, 290-299 (2018).
9. Lake, B.B., et al. Neuronal subtypes and diversity revealed by single-nucleus RNA sequencing of the human brain. Science 352, 1586-1590 (2016).
10. Habib, N., et al. Massively parallel single-nucleus RNA-seq with DroNc-seq. Nature Methods 14, 955 (2017).
11. Lake, B.B., et al. Integrative single-cell analysis of transcriptional and epigenetic states in the human adult brain. Nat Biotechnol 36, 70-80 (2018).
12. Sullivan, P.F., Neale, M.C. & Kendler, K.S. Genetic epidemiology of major depression: review and meta-analysis. The American journal of psychiatry 157, 1552-1562 (2000).
13. Lacar, B., et al. Nuclear RNA-seq of single neurons reveals molecular signatures of activation. Nature Communications 7, 11022 (2016).
14. van den Brink, S.C., et al. Single-cell sequencing reveals dissociation-induced gene expression in tissue subpopulations. Nature Methods 14, 935 (2017).
15. Grindberg, R.V., et al. RNA-sequencing from single nuclei. Proceedings of the National Academy of Sciences 110, 19802-19807 (2013).
16. Lake, B.B., et al. A comparative strategy for single-nucleus and single-cell transcriptomes confirms accuracy in predicted cell-type expression from nuclear RNA. Scientific reports 7, 6031 (2017).
17. Cutler, A.A., Jackson, J.B., Corbett, A.H. & Pavlath, G.K. Non-equivalence of nuclear import among nuclei in multinucleated skeletal muscle cells. Journal of Cell Science 131(2018).
18. Berridge, B.R., Bolon, B. & Herman, E. Chapter 10 - Skeletal Muscle System. in Fundamentals of Toxicologic Pathology (Third Edition) (eds. Wallig, M.A., Haschek, W.M., Rousseaux, C.G. & Bolon, B.) 195-212 (Academic Press, 2018).
19. Krishnaswami, S.R., et al. Using single nuclei for RNA-seq to capture the transcriptome of postmortem neurons. Nat Protoc 11, 499-524 (2016).
20. Nagy, C., et al. Single-nucleus RNA sequencing shows convergent evidence from different cell types for altered synaptic plasticity in major depressive disorder. bioRxiv (2018).
21. Jessa, S., et al. Stalled developmental programs at the root of pediatric brain tumors. Nature genetics 51, 1702-1713 (2019).
22. Mathys, H., et al. Single-cell transcriptomic analysis of Alzheimer’s disease. Nature 570, 332-337 (2019).
23. Velmeshev, D., et al. Single-cell genomics identifies cell type–specific molecular changes in autism. Science 364, 685 (2019).
24. Jäkel, S., et al. Altered human oligodendrocyte heterogeneity in multiple sclerosis. Nature 566, 543-547 (2019).
25. Sorrells, S.F., et al. Immature excitatory neurons develop during adolescence in the human amygdala. Nature Communications 10, 2748 (2019).
26. Proudfoot, N.J., Furger, A. & Dye, M.J. Integrating mRNA Processing with Transcription. Cell 108, 501-512 (2002).
27. Amamoto, R., et al. Probe-Seq enables transcriptional profiling of specific cell types from heterogeneous tissue by RNA-based isolation. eLife 8, e51452 (2019).
28. Welch, J.D., et al. Single-Cell Multi-omic Integration Compares and Contrasts Features of Brain Cell Identity. Cell 177, 1873-1887.e1817 (2019).
29. Skelly, D.A., et al. Single-Cell Transcriptional Profiling Reveals Cellular Diversity and Intercommunication in the Mouse Heart. Cell reports 22, 600-610 (2018).
30. Qu, K., et al. Individuality and variation of personal regulomes in primary human T cells. Cell systems 1, 51-61 (2015).
31. Cusanovich, D.A., et al. The cis-regulatory dynamics of embryonic development at single-cell resolution. Nature 555, 538-542 (2018).
32. Kriaucionis, S. & Heintz, N. The Nuclear DNA Base 5-Hydroxymethylcytosine Is Present in Purkinje Neurons and the Brain. Science 324, 929-930 (2009).
33. McCarthy, D.J., Campbell, K.R., Lun, A.T.L. & Wills, Q.F. Scater: pre-processing, quality control, normalization and visualization of single-cell RNA-seq data in R. Bioinformatics (Oxford, England) 33, 1179-1186 (2017).
34. Kiselev, V.Y., et al. SC3: consensus clustering of single-cell RNA-seq data. Nature Methods 14, 483-486 (2017).
35. Cao, J., et al. The single-cell transcriptional landscape of mammalian organogenesis. Nature 566, 496-502 (2019).
36. Butler, A., Hoffman, P., Smibert, P., Papalexi, E. & Satija, R. Integrating single-cell transcriptomic data across different conditions, technologies, and species. Nature Biotechnology 36, 411 (2018).
37. Stuart, T., et al. Comprehensive Integration of Single-Cell Data. Cell 177, 1888-1902.e1821 (2019).
38. Darmanis, S., et al. A survey of human brain transcriptome diversity at the single cell level. Proceedings of the National Academy of Sciences 112, 7285-7290 (2015).
39. Benaglia, T., Chauveau, D., Hunter, D.R. & Young, D.S. mixtools: An R Package for Analyzing Mixture Models. 2009 32, 29 (2009).