References
1. Sabat, A.J. et al. Overview of molecular typing methods for outbreak detection and epidemiological surveillance. Eurosurveillance 18, 17-30 (2013).
2. Jin, N., Zhang, D. & Martin, F.L. Fingerprinting microbiomes towards screening for microbial antibiotic resistance. Integr. Biol. (Camb) 9, 406-417 (2017).
3. Sintchenko, V., Iredell, J.R. & Gilbert, G.L. Pathogen profiling for disease management and surveillance. Nat. Rev. Microbiol. 5, 464-470 (2007).
4. Garon, D., Kaddoumi, A.E., Carayon, A. & Amiel, C. FT-IR Spectroscopy for Rapid Differentiation of Aspergillus flavus , Aspergillus fumigatus , Aspergillus parasiticus and Characterization of Aflatoxigenic Isolates Collected from Agricultural Environments. Mycopathologia 170, 131-42 (2010).
5. Alvarez-Ordóñez, A. & Prieto, M. Fourier Transform Infrared Spectroscopy in Food Microbiology, (2012).
6. Shapaval, V. et al. FTIR spectroscopic characterization of differently cultivated food related yeasts. Analyst 138, 4129-4138 (2013).
7. Alvarez-Ordóñez, A., Mouwen, D.J.M., López, M. & Prieto, M. Fourier transform infrared spectroscopy as a tool to characterize molecular composition and stress response in foodborne pathogenic bacteria. Journal of Microbiological Methods 84, 369-378 (2011).
8. Ji, S.Y., Dong, H.J., Hassan, M. & Ilev, I.K. Signature Infrared Bacteria Spectra Analyzed by an Advanced Integrative Computational Approach Developed for Identifying Bacteria Similarity. IEEE J. Sel. Top. Quant.7200908 (2018).
9. Muhamadali, H. et al. Rapid, accurate, and comparative differentiation of clinically and industrially relevant microorganisms via multiple vibrational spectroscopic fingerprinting. Analyst 141, 5127-5136 (2016).
10. Quintelas, C., Ferreira, E.C., Lopes, J.A. & Sousa, C. An Overview of the Evolution of Infrared Spectroscopy Applied to Bacterial Typing. Biotechnol. J. 13, 1700449 (2018).
11. Forrester, J.B., Valentine, N.B., Su, Y.F. & Johnson, T.J. Chemometric analysis of multiple species of Bacillus bacterial endospores using infrared spectroscopy: Discrimination to the strain level. Analytica. Chimica. Acta. 651, 24-30 (2009).
12. Kirschner, C., Maquelin, K., Pina, P., Thi, N.A.N. & Naumann, D. Classification and Identification of Enterococci: a Comparative Phenotypic, Genotypic, and Vibrational Spectroscopic Study. J.Clin.Microbiol. 39, 1763 (2001).
13. Butler, H.J. et al. Using Raman spectroscopy to characterize biological materials. Nat. Protoc. 11, 664-687 (2016).
14. Almasoud, N. et al. Rapid discrimination of Enterococcus faecium strains using multiple physicochemical analytical techniques. Anal. Meth. 8, (2016).
15. Pasternak, C.A. Microbial cell walls and membranes, (1980).
16. Amiel, C. et al. Identification and Classification of bacteria by fourier transform infrared spectroscopy (FTIR), Spectroscopy of Biological Molecules: Modern Trends. Springer, (1997).
17. Naumann, D. Infrared Spectroscopy in Microbiology. Encyclopedia of Analytical Chemistry, John Wiley & Sons, Ltd. (2006).
18. Burgula, Y. et al. Review of mid-infrared fourier transform-infrared spectroscopy application for bacterial detection. J. Rapid. Meth. Aut. Mic. 15, 146-175 (2010).
19. Baker, M.J. et al. Using Fourier transform IR spectroscopy to analyze biological materials. Nat. Protoc. 9, 1771-1791 (2014).
20. De, B.S., Speeckaert, M.M. & Delanghe, J.R. Applications of mid-infrared spectroscopy in the clinical laboratory setting. Crit. Rev. Clin. Lab. Sci. 55, 1-20 (2018).
21. Freitas, A.R., Rodrigues, C. & Peixe, L. Fourier transform infrared spectroscopy: unlocking fundamentals and prospects for bacterial strain typing. Eur. J. Clin. Microbiol. 38, 427-448 (2019).
22. Shi, H. et al. The strategy for correcting interference from water in Fourier transform infrared spectrum based bacterial typing. Talanta 208, 120347 (2020).
23. Zarnowiec, P., Mizera, A., Chrapek, M., Urbaniak, M. & Kaca, W. Chemometric analysis of attenuated total reflectance infrared spectra of Proteus mirabilis strains with defined structures of LPS. Innate. Immun. 22, 325-335 (2016).
24. Griffiths, P. & Haseth, J. Fourier Transform Infrared Spectrometry, Second Edition. (2006).
25. Davis, R. & Mauer, L.J. Fourier Transform Infrared (FT-IR) Spectroscopy: A Rapid Tool for Detection and Analysis of Foodborne Pathogenic Bacteria. Eur. J. Clin. Microbiol. 2, 1582-1594 (2010).
26. Trevisan, J., Angelov, P.P., Carmichael, P.L., Scott, A.D. & Martin, F.L. Extracting biological information with computational analysis of Fourier-transform infrared (FTIR) biospectroscopy datasets: current practices to future perspectives. Analyst 137, 3202-3215 (2012).
27. Wenning, M. & Scherer, S. Identification of microorganisms by FTIR spectroscopy: perspectives and limitations of the method. Appl. Microbiol.Biot. 97, 7111-7120 (2013).
28. Kaca, W.A., Czerwonka, G., Lechowicz, L. & Zarnowiec, P. Fourier Transform Infrared Spectroscopy (FTIR) as a Tool for the Identification and Differentiation of Pathogenic Bacteria. Curr Med.Chem. 22, (2015).
29. Preisner, O., Lopes, J.o.A., Guiomar, R., Machado, J. & Menezes, J.C. Fourier transform infrared (FT-IR) spectroscopy in bacteriology: towards a reference method for bacteria discrimination. Anal. Bioanal. Chem. 387, 1739 (2007).
30. Goodacre, R., Timmins, E.M., Rooney, P.J., Rowland, J.J. & Kell, D.B. Rapid identification of Streptococcus and Enterococcus species using diffuse reflectance-absorbance Fourier transform infrared spectroscopy and artificial neural networks. Fems Microbiol. Lett. 140, 233-239 (2010).
31. Maquelin, K. et al. Vibrational Spectroscopic Studies of Microorganisms. John Wiley & Sons (2002).
32. Carlos, C., Maretto, D.A., Poppi, R.J., Sato, M.I.Z. & Ottoboni, L.M.M. Fourier transform infrared microspectroscopy as a bacterial source tracking tool to discriminate fecal E. coli strains. Microchem. J. 99, 15-19 (2015).
33. Yang, H., Yang, S., Kong, J., Dong, A. & Yang, S. Obtaining information about protein secondary structures in aqueous solution using Fourier transform IR spectroscopy. Nat. Protoc. 10, 382-396 (2015).
34. Kong, J. & Yu, S. Fourier Transform Infrared Spectroscopic Analysis of Protein Secondary Structures. Acta. Bioch. Bioph. Sin 39, 549 (2007).
35. Movasaghi, Z., Rehman, S. & Rehman, I.U. Fourier transform infrared (FTIR) spectroscopy of biological tissues. Appl. Spectrosc. Rev. 43, 134-179 (2008).
36. Maquelin, K. et al. Identification of medically relevant microorganisms by vibrational spectroscopy. J. Microbiol Meth. 51, 255-271 (2002).
37. Yu, C. & Irudayaraj, J. Spectroscopic characterization of microorganisms by Fourier transform infrared microspectroscopy. Biopolymers 77, 368-377 (2010).
38. Grunert, T. et al. Analysis of Staphylococcus aureus wall teichoic acid glycoepitopes by Fourier Transform Infrared Spectroscopy provides novel insights into the staphylococcal glycocode. Sci. Rep. 8, 1889 (2018).
39. Bosch, A. et al. Characterization ofBordetella pertussisgrowing as biofilm by chemical analysis and FT-IR spectroscopy. Appl. Microbiol. Biot. 71, 736 (2006).
40. Socrates, G. Infrared and Raman Characteristic Group Frequencies: Tables and Charts, 3rd Edition. Proteomics (2004).
41. Movasaghi, Z., Rehman, S. & ur Rehman, D.I. Fourier Transform Infrared (FTIR) Spectroscopy of Biological Tissues. Appl. Spectrosc. Rev. 43, 134-179 (2008).
42. Randall, H.M., Smith, D.W., Colm, A.C. & Nungester, W.J. Correlation of biologic properties of strains of Mycobacterium with infra-red spectrums. I. Reproducibility of extracts of M. tuberculosis as determined by infra-red spectroscopy. American Review of Tuberculosis 63, 372 (1951).
43. Levine, S., Stevenson, H.J.R., Chambers, L.A. & Kenner, B.A. Infrared spectrophotometry of enteric bacteria. J. Bacteriol. 65, 10-15 (1953).
44. Bordner, R.H. et al. Bacterial identification by infrared spectrophotometry. J. Bacteriol. 72, 593 (1956).
45. Naumann, D., Helm, D. & Labischinski, H. Microbiological characterizations by FT-IR spectroscopy. Nature 351, 81-2 (1991).
46. Helm, D., Labischinski, H. & Naumann, D. Elaboration of a procedure for identification of bacteria using Fourier-Transform IR spectral libraries: A stepwise correlation approach. Journal of Microbiological Methods 14, 127-142 (1991).
47. Classification and identification of bacteria by fourier transform ir spectroscopy. J Microbiol. Meth. 137, 69-80 (1991).
48. Nelson, W.H. Modern Techniques for Rapid Microbiological Analysis, Wiley-VCH (1991).
49. Naumann, D., Keller, S., Helm, D., Schultz, C. & Schrader, B. FT-IR spectroscopy and FT-Raman spectroscopy are powerful analytical tools for the non-invasive characterization of intact microbial cells. J. Mol. Struct. 347, 399-405 (1995).
50. Novais, Â., Freitas, A.R., Rodrigues, C. & Peixe, L. Fourier transform infrared spectroscopy: unlocking fundamentals and prospects for bacterial strain typing. Eur. J. Clin. Microbiol. 38, 427-448 (2019).
51. Finlayson, D., Rinaldi, C. & Baker, M. Is Infrared Spectroscopy Ready for the Clinic? Analy.Chem. 91(2019).
52. Stuart, B. FTIR of Biomolecules, Wiley‐VCH Verlag GmbH & Co. KGaA. (2006).
53. Bury, D. et al. Spectral classification for diagnosis involving numerous pathologies in a complex clinical setting: A neuro-oncology example. Spectrochim. Acta A. 206, 89-96 (2019)
54. Byrne, H.J., Knief, P., Keating, M.E. & Bonnier, F. Spectral pre and post processing for infrared and Raman spectroscopy of biological tissues and cells. Chem. Soc. Rev. 45, 1865-1878 (2016).
55. Bosch, A. et al. Fourier transform infrared spectroscopy for rapid identification of nonfermenting gram-negative bacteria isolated from sputum samples from cystic fibrosis patients. J. Clin. Microbiol. 46, 2535-2546 (2008).
56. Salman, A. et al. Detection of antibiotic resistant Escherichia Coli bacteria using infrared microscopy and advanced multivariate analysis. Analyst 142, 2136-2144 (2017).
57. Gram, L. et al. Food spoilage—interactions between food spoilage bacteria. Int. J. Food. Microbiol. 78, 79-97 (2002).
58. Ahmad, S. et al. Identification of fungal phytopathogens using Fourier transform infrared-attenuated total reflection spectroscopy and advanced statistical methods. J. Biomed.Opt. 17, 017002 (2012).
59. Mantsch, H. & Chapman, D. Infrared Spectroscopy of Biomolecules. Wiley–Liss, (1996).
60. Willey, B.M. et al. Practical approach to the identification of clinically relevant Enterococcus species. Diagn. Micr. Infec. Dis. 34, 165-171 (1999).
61. Joensen, K.G., Tetzschner, A.M.M., Iguchi, A., Aarestrup, F.M. & Scheutz, F. Rapid and Easy In Silico Serotyping of Escherichia coli Isolates by Use of Whole-Genome Sequencing Data. J. Clin. Microbiol. 53, 2410-2426 (2015).
62. Jauneikaite, E. et al. Current methods for capsular typing of Streptococcus pneumoniae. J. Microbiol. Meth. 113, 41-49 (2015).
63. Fratamico, P.M. et al. Advances in Molecular Serotyping and Subtyping of Escherichia coli. Front. Microbiol. 7(2016).
64. Yoshida, C.E. et al. The Salmonella In Silico Typing Resource (SISTR): An Open Web-Accessible Tool for Rapidly Typing and Subtyping Draft Salmonella Genome Assemblies. Plos One 11(2016).
65. Schwartz, D.C. & Cantor, C.R. Separation of Yeast Chromosome-Sized Dnas by Pulsed Field Gradient Gel-Electrophoresis. Cell 37, 67-75 (1984).
66. Freiwald, A. & Sauer, S. Phylogenetic classification and identification of bacteria by mass spectrometry. Nat. Protoc. 4, 732-742 (2009).
67. Dixon, P. et al. A systematic review of matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry compared to routine microbiological methods for the time taken to identify microbial organisms from positive blood cultures. Eur. J. Clin. Microbiol. Infect. Dis. 34, 863-876 (2015).
68. Deak, E. et al. Comparison of the Vitek MS and Bruker Microflex LT MALDI-TOF MS platforms for routine identification of commonly isolated bacteria and yeast in the clinical microbiology laboratory. Diagn. Micr. Infec. Dis. 81, 27-33 (2015).
69. Sauget, M., Valot, B., Bertrand, X. & Hocquet, D. Can MALDI-TOF Mass Spectrometry Reasonably Type Bacteria? Trends Microbiol. 25, 447-455 (2017).
70. Fernández-Álvarez, C., Torres-Corral, Y. & Santos, Y.J.J.o.p. Use of ribosomal proteins as biomarkers for identification of Flavobacterium psychrophilum by MALDI-TOF mass spectrometry. J. Proteomics. 170, 59-69 (2018).
71. Teramoto, K. et al. Phylogenetic classification of Pseudomonas putida strains by MALDI-MS using ribosomal subunit proteins as biomarkers. Anal. Chem. 79, 8712-8719 (2007).
72. Sato, H. et al. Characterization of the Lactobacillus casei group based on the profiling of ribosomal proteins coded in S10-spc-alpha operons as observed by MALDI-TOF MS. Syst. Appl. Microbiol. 35, 447-454 (2012).
73. Fernßndez-No, I., DÝaz-Bao, M., Cepeda, A., Barros-Velßzquez, J. & Calo-Mata, P.J.F.m. Characterisation and profiling of Bacillus subtilis, Bacillus cereus and Bacillus licheniformis by MALDI-TOF mass fingerprinting. Food. Microbiol. 33, 235-242 (2013).
74. Quiles-Melero, I., Garcia-Rodriguez, J., Gómez-López, A., Mingorance, J.J.E.j.o.c.m. & diseases, i. Evaluation of matrix-assisted laser desorption/ionisation time-of-flight (MALDI-TOF) mass spectrometry for identification of Candida parapsilosis, C. orthopsilosis and C. metapsilosis. Eur. J. Clin Microbiol. Infect. Dis. 31, 67-71 (2012).
75. Biswas, S. & Rolain, J.-M.J.J.o.m.m. Use of MALDI-TOF mass spectrometry for identification of bacteria that are difficult to culture. J. Microbiol. Meth. 92, 14-24 (2013).
76. Stübiger, G. et al. Characterization of yeasts and filamentous fungi using MALDI lipid phenotyping. J. Microbiol. Meth. 130, 27-37 (2016).
77. He, Y., Li, H., Lu, X., Stratton, C.W. & Tang, Y.-W.J.J.o.c.m. Mass spectrometry biotyper system identifies enteric bacterial pathogens directly from colonies grown on selective stool culture media. J. Clin. Microbiol. 48, 3888-3892 (2010).
78. Martiny, D. et al. Comparison of the Microflex LT and Vitek MS systems for routine identification of bacteria by matrix-assisted laser desorption ionization–time of flight mass spectrometry. J. Clin. Microbiol. 50, 1313-1325 (2012).
79. Khot, P.D. & Fisher, M.A.J.J.o.c.m. Novel approach for differentiating Shigella species and Escherichia coli by matrix-assisted laser desorption ionization–time of flight mass spectrometry. J. Clin. Microbiol. 51, 3711-3716 (2013).
80. Paauw, A. et al. Rapid and reliable discrimination between Shigella species and Escherichia coli using MALDI-TOF mass spectrometry. Int. J. Med. Microbiol. 305, 446-452 (2015).
81. Romanolo, K.F., Gorski, L., Wang, S. & Lauzon, C.R. Rapid Identification and Classification of Listeria spp. and Serotype Assignment of Listeria monocytogenes Using Fourier Transform-Infrared Spectroscopy and Artificial Neural Network Analysis. PLoS One 10, e0143425 (2015)..
82. Lasch, P. Spectral pre-processing for biomedical vibrational spectroscopy and microspectroscopic imaging. Chemometr. Intell. Lab. 117, 100-114 (2012).
83. Siqueira, L.F.S. & Lima, K.M.G. A decade (2004 – 2014) of FTIR prostate cancer spectroscopy studies: An overview of recent advancements. Trac. Trends. Anal. Chem. 82, 208-221 (2016).
84. Martens, H., Nielsen, J.P. & Engelsen, S.B. Light Scattering and Light Absorbance Separatedby Extended Multiplicative Signal Correction.Application to Near-Infrared Transmission Analysisof Powder Mixtures. Anal. Chem. 75, 394-404 (2003).
85. Mazet, V., Carteret, C., Brie, D., Idier, J.m. & Humbert, B. Background removal from spectra by designing and minimising a non-quadratic cost function. Chemometr. Intell. Lab. 76, 121-133 (2005).
86. Lieber, C.A. & Mahadevanjansen, A. Automated method for subtraction of fluorescence from biological Raman spectra. Applied Spectroscopy 57, 1363-1367 (2003).
87. Baldauf, N.A., Rodriguezromo, L.A., Yousef, A.E. & Rodriguezsaona, L.E. Differentiation of Selected Salmonella enterica Serovars by Fourier Transform Mid-Infrared Spectroscopy. Appli. Spectrosc. 60, 592-598 (2006).
88. Hamel, L. & Brown, C.W. Bayesian Probability Approach to Feature Significance for Infrared Spectra of Bacteria. Appli. Spectrosc. 66, 48-59 (2012).
89. Sharaha, U. et al. Using Infrared Spectroscopy and Multivariate Analysis to Detect Antibiotics’ Resistant Escherichia coli Bacteria. Anal.Chem. 89, 8782-8790 (2017).
90. Comparato Filho, O.O., Morais, F.V., Bhattacharjee, T., Castilho, M.L. & Raniero, L. Rapid identification of Paracoccidioides lutzii and P. Brasiliensis using Fourier Transform Infrared spectroscopy. J. Mol .Struc. 1177, 152-159 (2019).
91. Lin, M., Al-Holy, M., Al-Qadiri, H., Kang, D.H. & Rasco, B.A. Discrimination of Intact and Injured Listeria monocytogenes by Fourier Transform Infrared Spectroscopy and Principal Component Analysis. J. Agr. Food. Chem. 52, 5769 (2004).
92. Rebuffo-Scheer, C.A., Schmitt, J. & Scherer, S. Differentiation of Listeria monocytogenes Serovars by Using Artificial Neural Network Analysis of Fourier-Transformed Infrared Spectra. Appl. Environ. Microbiol. 73, 1036-1040 (2007).
93. Rebuffo-Scheer, C.A., Dietrich, J., Wenning, M. & Scherer, S. Identification of fiveListeriaspecies based on infrared spectra (FTIR) using macrosamples is superior to a microsample approach. Anal. Bioanal.Chem. 390, 1629-1635 (2008).
94. Al-Qadiri, H.M., Al-Alami, N.I., Lin, M., Al-Holy, M. & Rasco, B.A. Studying of the bacterial growth phases using fourier transform infrared spectroscopy and multivariate analysis. J. Rapid Meth. Aut. Mic. 16, 73-89 (2010).
95. Al‐Qadiri, H.M., Lin, M., Al‐Holy, M.A., Cavinato, A.G. & Rasco, B.A. Studying of the bacterial growth phases using fourier transform infrared spectroscopy and multivariate analysis. J. Rapid Meth. Aut. Mic. 16, 73-89 (2010).
96. Smith, B.C. Fundamentals of fourier transform infrared spectroscopy, second edition. Crc Press (2011).
97. Grunert, T. et al. Rapid and Reliable Identification of Staphylococcus aureus Capsular Serotypes by Means of Artificial Neural Network-Assisted Fourier Transform Infrared Spectroscopy. J.Clin. Microbiol. 51, 2261-2266 (2013).
98. Al-Holy, M.A., Lin, M., Al-Qadiri, H., Cavinato, A.G. & Rasco, B.A. Classification of foodborne pathogens by fourier transform infrared spectroscopy and pattern recognition tecniques. J. Rapid. Meth. Aut. Microbiol. 14, 189-200 (2010).
99. Lorin-Latxague, C. & Melin, A.-M. Radical induced damage of Micrococcus luteus bacteria monitored using FT-IR spectroscopy. Spectroscopy 19(2005).
100. Al-Qadiri, H.M., Al-Alami, N.I., Al-Holy, M.A., Rasco, B.A.J.J.o.a. & chemistry, f. Using Fourier transform infrared (FT-IR) absorbance spectroscopy and multivariate analysis to study the effect of chlorine-induced bacterial injury in water. J. Agric. Food Chem. 56, 8992-8997 (2008).
101. Singh, I., Juneja, P., Kaur, B. & Kumar, P. Pharmaceutical Applications of Chemometric Techniques. Isrn. Analy. Chem. 2013, 13 (2013).
102. Sekhar, S., Ohri, M. & Chakraborti, A. Biofilms: An evolving and universal evasive strategy of bacterial pathogens. “Current Research, Technology and Education Topics in Applied Microbiology and Microbial Biotechnology”. 855-859 (2011).
103. Campos, J. et al. Discrimination of non-typhoid Salmonella serogroups and serotypes by Fourier Transform Infrared Spectroscopy: A comprehensive analysis. Int. J. Food. Microbiol. 285, 34-41 (2018).
104. Chong, J., Wishart, D.S. & Xia, J. Using MetaboAnalyst 4.0 for Comprehensive and Integrative Metabolomics Data Analysis. Current. Protocols. In Bioinformatics.68, e86 (2019).
105. Somorjai, R.L. et al. A Data-Driven, Flexible Machine Learning Strategy for the Classification of Biomedical Data. Current. Protocols. In Bioinformatics. (2004).
106. Wold, S. Principal component analysis. Chemometrics & Intell. Lab. Syst. 2, 37-52 (1987).
107. Trevisan, J. et al. Measuring similarity and improving stability in biomarker identification methods applied to Fourier-transform infrared (FTIR) spectroscopy. J. Biophotonics. 7, 254-265.
108. Aline, D.S.M., de Melo, M.C.N., Cidral, T.A. & de Lima, K.M.G.J.J.o.M.M. Feature selection strategies for identification of Staphylococcus aureus recovered in blood cultures using FT-IR spectroscopy successive projections algorithm for variable selection: A case study. J. Microbiol. Meth. 98, 26-30.
109. Mariey, L., Signolle, J.P., Amiel, C. & Travert, J. Discrimination, classification, identification of microorganisms using FTIR spectroscopy and chemometrics. Vib. spectrosc. 26, 151-159 (2001).
110. Sandrin, T.R., Goldstein, J.E. & Schumaker, S. MALDI TOF MS profiling of bacteria at the strain level: A review. Mass. Spectrom. Rev. 32, 188-217 (2013).
111. Pailhoriès, H., Daure, S., Eveillard, M., Joly-Guillou, M.-L. & Kempf, M. Using Vitek MALDI-TOF mass spectrometry to identify species belonging to the Acinetobacter calcoaceticus–Acinetobacter baumannii complex: a relevant alternative to molecular biology? Diagnostic. Mic. Infec. Dis. 83, 99-104 (2015).
112. Annette, N. A novel procedure for strain classification of fungal mycelium by cluster and artificial neural network analysis of Fourier transform infrared (FTIR) spectra. Analyst 134, 1215-1223 (2009).
113. Burgula, Y., Khali, D., Kim, S., Krishnan, S.S. & Mauer, L.J. Review of mid-infrared Fourier transform-infrared spectroscopy applications for bacterial detection. Rapid. Meth. Aut. Mic. 15, 146-175 (2010).
114. Lasch, P. et al. FT-IR Hyperspectral Imaging and Artificial Neural Network Analysis for Identification of Pathogenic Bacteria. Anal.Chem. 90, 8896-8904 (2018).
115. Auda, G. & Kamel, M.S. Modular Neural Network Classifiers: A Comparative Study, J. Robot. Syst. 117-129 (1998).
116. Rigelsford, J. Pattern recognition: concepts, methods, and applications. Assembly. autom. 22 4. (2001).
117. Mantini, D. et al. LIMPIC: a computational method for the separation of protein MALDI-TOF-MS signals from noise. BMC. Bioinformatics. 8, 101-0.
118. Zhou, J., Yang, Y., Zhang, M. & Xing, H.J.S.C. Constructing ECOC based on confusion matrix for multiclass learning problems. Sci. china. Inf. Sci. 59, 1-14.
119. Normand, A. C. et al. Assessment of various parameters to improve MALDI-TOF MS reference spectra libraries constructed for the routine identification of filamentous fungi. BMC. Microblol. 13, 76 (2013).
120. Erler, R. et al. VibrioBase: A MALDI-TOF MS database for fast identification of Vibrio spp. that are potentially pathogenic in humans. Syst. Appl. Microbiol. 38, 16-25 (2015).