1. Wosik J, Fudim M, Cameron B, Gellad ZF, Cho A, Phinney D, Curtis S, Roman M, Poon EG, Ferranti J, Katz JN, Tcheng J. Telehealth transformation: COVID-19 and the rise of virtual care. J Am Med Informatics Assoc 2020 Jun 1;27(6):957–962. doi: 10.1093/jamia/ocaa067
2. Fernandes LG, Devan H, Fioratti I, Kamper SJ, Williams CM, Saragiotto BT. At my own pace, space, and place: a systematic review of qualitative studies of enablers and barriers to telehealth interventions for people with chronic pain. Pain 2022 Feb;163(2):e165–e181. doi: 10.1097/j.pain.0000000000002364
3. Balkrishnan R, Chang J, Patel I, Yang F, Merajver SD. Global comparative healthcare effectiveness research: evaluating sustainable programmes in low & middle resource settings. Indian J Med Res 2013 Mar;137(3):494–501. PMID:23640555
4. Mills SEE, Nicolson KP, Smith BH. Chronic pain: a review of its epidemiology and associated factors in population-based studies. Br J Anaesth 2019 Aug;123(2):e273–e283. doi: 10.1016/j.bja.2019.03.023
5. Kwon JH. Overcoming Barriers in Cancer Pain Management. J Clin Oncol 2014 Jun 1;32(16):1727–1733. doi: 10.1200/JCO.2013.52.4827
6. Nanda U, Luo J, Wonders Q, Pangarkar S. Telerehabilitation for Pain Management. Phys Med Rehabil Clin N Am 2021 May;32(2):355–372. doi: 10.1016/j.pmr.2021.01.002
7. Kruse CS, Krowski N, Rodriguez B, Tran L, Vela J, Brooks M. Telehealth and patient satisfaction: a systematic review and narrative analysis. BMJ Open 2017 Aug 3;7(8):e016242. doi: 10.1136/bmjopen-2017-016242
8. Richardson PA, Parker DM, Chavez K, Birnie KA, Krane EJ, Simons LE, Cunningham NR, Bhandari RP. Evaluating Telehealth Implementation in the Context of Pediatric Chronic Pain Treatment during COVID-19. Children 2021 Aug 31;8(9):764. doi: 10.3390/children8090764
9. Moher D, Shamseer L, Clarke M, Ghersi D, Liberati A, Petticrew M, Shekelle P, Stewart LA. Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015 statement. Syst Rev 2015 Dec 1;4(1):1. doi: 10.1186/2046-4053-4-1
10. Motahari-Nezhad H. An artificial neural network (ANN) model for publication bias: a machine learning-based study on PubMed meta-analyses. Aslib J Inf Manag 2023 Jan 24; doi: 10.1108/AJIM-08-2022-0364
11. Sterne JAC, Savović J, Page MJ, Elbers RG, Blencowe NS, Boutron I, Cates CJ, Cheng H-Y, Corbett MS, Eldridge SM, Emberson JR, Hernán MA, Hopewell S, Hróbjartsson A, Junqueira DR, Jüni P, Kirkham JJ, Lasserson T, Li T, McAleenan A, Reeves BC, Shepperd S, Shrier I, Stewart LA, Tilling K, White IR, Whiting PF, Higgins JPT. RoB 2: a revised tool for assessing risk of bias in randomised trials. BMJ 2019 Aug 28;l4898. doi: 10.1136/bmj.l4898
12. Duval S, Tweedie R. Trim and Fill: A Simple Funnel‐Plot–Based Method of Testing and Adjusting for Publication Bias in Meta‐Analysis. Biometrics 2000 Jun 24;56(2):455–463. doi: 10.1111/j.0006-341X.2000.00455.x
13. Song F, Hooper, Loke Y. Publication bias: what is it? How do we measure it? How do we avoid it? Open Access J Clin Trials 2013 Jul;71. doi: 10.2147/OAJCT.S34419
14. Guyatt GH, Oxman AD, Kunz R, Vist GE, Falck-Ytter Y, Schünemann HJ. What is “quality of evidence” and why is it important to clinicians? BMJ 2008 May 3;336(7651):995–998. doi: 10.1136/bmj.39490.551019.BE
15. Schünemann H, Brożek J, Guyatt G, Oxman A. Introduction to GRADE Handbook Handbook for grading the quality of evidence and the strength of recommendations using the GRADE approach. 2013. Available from: https://gdt.gradepro.org/app/handbook/handbook.html#h.9rdbelsnu4iy [accessed Jan 15, 2021]
16. Motahari-Nezhad H, Péntek M, Gulácsi L, Zrubka Z. Outcomes of Digital Biomarker–Based Interventions: Protocol for a Systematic Review of Systematic Reviews. JMIR Res Protoc 2021 Nov 24;10(11):e28204. doi: 10.2196/28204