1. Kaul, V., Enslin, S. & Gross, S.A. History of artificial intelligence in medicine. Gastrointest Endosc 92, 807-812 (2020).
2. Vodanović, M., Subašić, M., Milošević, D. & Savić Pavičin, I. Artificial Intelligence in Medicine and Dentistry. Acta Stomatol Croat 57, 70-84 (2023).
3. Grech, V., Cuschieri, S. & Eldawlatly, A.A. Artificial intelligence in medicine and research - the good, the bad, and the ugly. Saudi J Anaesth 17, 401-406 (2023).
4. Deo, R.C. Machine Learning in Medicine. Circulation 132, 1920-1930 (2015).
5. MacEachern, S.J. & Forkert, N.D. Machine learning for precision medicine. Genome 64, 416-425 (2021).
6. Hassan, M., et al. Innovations in Genomics and Big Data Analytics for Personalized Medicine and Health Care: A Review. Int J Mol Sci 23(2022).
7. Rudin, R.S., Friedberg, M.W., Shekelle, P., Shah, N. & Bates, D.W. Getting Value From Electronic Health Records: Research Needed to Improve Practice. Ann Intern Med 172, S130-s136 (2020).
8. Shamout, F., Zhu, T. & Clifton, D.A. Machine Learning for Clinical Outcome Prediction. IEEE Rev Biomed Eng 14, 116-126 (2021).
9. Dankers, F., Traverso, A., Wee, L. & van Kuijk, S.M.J. Prediction Modeling Methodology. in Fundamentals of Clinical Data Science(eds. Kubben, P., Dumontier, M. & Dekker, A.) 101-120 (Springer, Cham (CH), 2019).
10. Traverso, A., Dankers, F., Osong, B., Wee, L. & van Kuijk, S.M.J. Diving Deeper into Models. in Fundamentals of Clinical Data Science (eds. Kubben, P., Dumontier, M. & Dekker, A.) 121-133 (Springer, Cham (CH), 2019).
11. Christodoulou, E., et al. A systematic review shows no performance benefit of machine learning over logistic regression for clinical prediction models. J Clin Epidemiol 110, 12-22 (2019).
12. Song, X., Liu, X., Liu, F. & Wang, C. Comparison of machine learning and logistic regression models in predicting acute kidney injury: A systematic review and meta-analysis. Int J Med Inform 151, 104484 (2021).
13. Sufriyana, H., et al. Comparison of Multivariable Logistic Regression and Other Machine Learning Algorithms for Prognostic Prediction Studies in Pregnancy Care: Systematic Review and Meta-Analysis. JMIR Med Inform 8, e16503 (2020).
14. He, M., Li, Z., Liu, C., Shi, D. & Tan, Z. Deployment of Artificial Intelligence in Real-World Practice: Opportunity and Challenge. Asia Pac J Ophthalmol (Phila) 9, 299-307 (2020).
15. Paleyes, A., Urma, R.-G. & Lawrence, N.D. Challenges in deploying machine learning: a survey of case studies. ACM Computing Surveys 55, 1-29 (2022).
16. Andaur Navarro, C.L., et al. Systematic review identifies the design and methodological conduct of studies on machine learning-based prediction models. J Clin Epidemiol 154, 8-22 (2023).
17. Park, S.Y. Nomogram: An analogue tool to deliver digital knowledge. J Thorac Cardiovasc Surg 155, 1793 (2018).
18. Ciecierski-Holmes, T., Singh, R., Axt, M., Brenner, S. & Barteit, S. Artificial intelligence for strengthening healthcare systems in low- and middle-income countries: a systematic scoping review. NPJ Digit Med 5, 162 (2022).
19. Cabitza, F., Campagner, A. & Balsano, C. Bridging the "last mile" gap between AI implementation and operation: "data awareness" that matters. Ann Transl Med 8, 501 (2020).
20. Huber, W., et al. Orchestrating high-throughput genomic analysis with Bioconductor. Nat Methods 12, 115-121 (2015).
21. Moons, K.G.M., et al. PROBAST: A Tool to Assess Risk of Bias and Applicability of Prediction Model Studies: Explanation and Elaboration. Ann Intern Med 170, W1-w33 (2019).
22. Wolberg, W., Street, W. & Mangasarian, O. Breast cancer wisconsin (diagnostic). UCI Machine Learning Repository (1995).