1. Zhang, X. F., Ni, Y. S., Song, C. X. Research on non-destructive testing technology for existing bridge pile foundations [J]. Structural Monitoring and Maintenance, an International Journal. 7(1), 43-58 (2020).
2. Javadi, A., Katebi, H., Esmaeili-Falak, M. Experimental study of the mechanical behavior of frozen soils - A case study of tabriz subway[J]. Periodica Polytechnica Civil Engineering. 62(1): 117-125 (2017).
3. Wang, L. L., Wang, Z. T. , Ding, Z. P., et al. Factors influencing accuracy of free swelling ratio of expansive soil[J].Journal of Central South University. 29(05): 1653-1662 (2022).
4. Sun, Y., Weng, X., Wang, W., et al. A thermodynamically consistent framework for visco-elasto-plastic creep and anisotropic damage in saturated frozen soils[J]. Continuum Mechanics and Thermodynamics. 33(1): 53-68 (2020).
5. Gong, F., Si, X., Li, X., et al. Dynamic triaxial compression tests on sandstone at high strain rates and low confining pressures with split Hopkinson pressure bar[J]. International Journal of Rock Mechanics and Mining Sciences. 113: 211-219 (2019).
6. Jia, J., Tang, H., Chen, H. Dynamic mechanical properties and energy dissipation characteristics of frozen soil under passive confined pressure[J]. Acta Mechanica Solida Sinica. 34(2): 184-203 (2021).
7. Domaschuk, L., Shields, D. H., Fransson L. Reactive soil pressures along pile in frozen sand [J].Journal of Cold Regions Engineering. 5(4):174-194 (1991).
8. Biggar, K. W. , Sego, D. C. The strength and deformation behavior of model adfreeze and grouted piles in saline frozen soils[J]. Canadian Geotechnical Journal. 30(2):319-337 (1993).
9. Wu, Y. P., Zhu, Y. L., Guo, C. X., et al. Multifield cou- pling model and its application in permafrost[J].Science in China Series D:Earth Sciences. 48(7):968-977 (2005).
10. Wang, R. H., Wang, W., Chen, Y. F. Model experimental study on compressive bearing capacity of single pile in frozen soil [J].Journal of Glaciology and Geocryology. 27(2); 188-193 (2005).
11. Wu, Y. P., Guo, C. X., Pan, W. D., et al. Influences of refreezing process of ground on bearing capacity of single pile and bridge construction in permafrost[J].Chinese Journal of Rock Me chanics and Engineering. 23(24):4229-4233 (2004).
12. Zhu, Z., Liu, Z., Xie, Q., et al. Dynamic mechanical experiments and microstructure constitutive model of frozen soil with different particle sizes[J]. International Journal of Damage Mechanics. 27(5): 686-706 (2017).
13. Wang, X. R., Li, Z. H., Sun, B. J., et al. Coupling mechanisms between cement hydration and permafrost during well construction in the Arctic region [J]. Geoenergy Science and Engineering. (2023).
14. Shangguan, Z., Zhu, Z., Tang, W. Dynamic impact experiment and numerical simulation of frozen soil with prefabricated holes[J]. Journal of Engineering Mechanics, 146(8): 04020085 (2020).
15. China Academy of Building Research. Technical code for testing of building foundation piles (JGJ106-2014) [S]. Beijing : China Construction Industry Press. (2014).
16. Xu, C. H., Xu, X. Y. Numerical analysis of adfreezing force of engineering pile in permafrost[J]. Journal of Harbin Institute of Technology. 39(4): 542-545 (2007).
17. Ding, X. M., Luan, L. B., Zhang, C. J., et al. An analytical solution for wave propagation in a pipe pile with multiple defects[J]. Acta Mechanica Solida Sinica.33(2):251-267 (2020).
18. Liu, H. B., Zhang, Q., Ren, L. Mechanical performance monitoring for prestressed concrete piles used in a newly-built high-piled Wharf in a Harbor with Fiber Bragg Grating Sensor Technology When Pile Driving[J]. Applied Sciences. 7(5): 489-501 (2017).
19. Momeni, E., Nazir, R., Armaghani, D. J., et al. Prediction of pile bearing capacity using a hybrid genetic algorithm-based ANN[J]. Measurement. 57: 122-131 (2014).
20. Amiri, G. S., Grimstad, G., Kadivar, M., et al. Constitutive model for rate-independent behavior of saturated frozen soils[J]. Canadian Geotechnical Journal. 53(10):1646-1657 (2016).
21. Zhou, Z. J., Yang, T., Fan, H. B. A Full-scale field study on bearing characteristics of cast-in-place piles with different hole-forming methods in loess area[J]. Advances in Civil Engineering. 6: 1-12 (2019).
22. Chen, R. B., Zhang, J. C., Chen, Z. Y., Gu, M. X. A novel Numerical method for calculating vertical bearing capacity of prestressed pipe piles[J]. Advances in Civil Engineering. 2: 1-20 (2020).
23. Xia, Z., Zou, J. Simplified approach for settlement analysis of vertically loaded pile[J].Journal of Engineering Mechanics. 143(11): 04017124 (2017).
24. Likins, G.. E., Rausche, F. Correlation of CAPWAP with static load tests[C]//Proceedings of the Seventh International Conference on the Application of Stresswave Theory to Piles. 153-165 (2004).
25. Rausche, F., Likins, G., Liang, L., et al. Static and dynamic models for CAPWAP signal matching[M]//Art of foundation engineering practice. 534-553 (2010).
26. Zhang, Q., Zhang, Z. A simplified nonlinear approach for single pile settlement analysis[J].Revue Canadienne De Géotechnique. 49(11):1256-1266 (2012).
27. Liu, X., Wang, K. H., Nagger, M. H. E. Dynamic pile-side soil resistance during longitudinal vibration[J]. Soil Dynamics and Earthquake Engineering. 134:106148 (2020).
28. Wu, Y. P., Wang, H. X., Wang, N., et al. Experimental method of ultimate bearing capacity of pile foundation in permafrost region [J]. China Journal of Highway and Transport. 31(01):38-45 (2018).
29. Tang, W., Zhu, Z., Fu, T., et al. Dynamic experiment and numerical simulation of frozen soil under confining pressure[J]. Acta Mechanica Sinica. 36(6): 1302-1318 (2020).
30. Zhang, F., Zhu, Z., Fu, T., et al. Damage mechanism and dynamic constitutive model of frozen soil under uniaxial impact loading[J]. Mechanics of Materials. 140:103217 (2020).
31. Wang, J. Z., Li, S. S., Zhou, G. Q., et al. Analysis of bearing capacity of pile foundation in high temperature permafrost regions with permafrost table descending [J]. Chinese Journal of Rock Mechanics and Engineering. 25(S2):4226-4232 (2006).
32. Sakr, M. Comparison between high strain dynamic and static load tests of helical piles in cohesive soils [J]. Soil Dynamics and Earthquake Engineering. 54(11): 20-30 (2013).
33. Budi, G..S., Kosasi ,M., Wijaya, D.H. Bearing capacity of pile foundations embedded in clays and sands layer predicted using PDA test and static load test [J]. Procedia Engineering. 125: 406-410 (2015).
34. Moayedi, H., Mosallanezhad, M., Nazir, R. Evaluation of laintained load test (MLT) and pile driving analyzer (PDA) in measuring bearing capacity of driven reinforced concrete piles [J]. Soil Mech Found Engineering. 54(3): 150-154 (2017).
35. Chen, G. A., Liu, D. J. Study on matching calculation for high strain test piles [J]. Chinese Journal of Engineering Geophysics. 5(2):215-221 (2008).
36. Yang, L. Z. Research on damage detection and supporting capacity evaluation of the pile by dynamic characteristic [M. S. Thesis] [D]. Wuhan University of Technology. in Chinese. (2008).
37. Chen, J. Z, Wen, Z. T. A theoretical study on the impulse response of hammer-pile-soil system in high strain dynamic pile test[J]. China Civil Engineering Journal. 40(5):53-60 (2007).
38. Yu, D. Z., Cheng, P. F., Ji, C., et al. Research on bearing capacity of bridge pile foundation based on high-strain dynamic test method [J]. Highway. 60(05):67-70 (2015).
39. Sung, G. K., Chang, H. C.Experimental study on adfreeze bond strength between frozen sand and aluminum with varying freezing temperature and vertical confining pressure [J].Journal of the Korean Geotechnical Society. 27( 9) : 67-76 (2011).
40. Sun, H.C. , Yang, P. , Wang, G,L. Development of mechanical experimental system for interface layer between frozen soil and structure and its application [J]. Rock and Soil Mechanics. 35(12):3636-3641+3643 (2014).
41. Zhao, L. Z., Yang, P., Wang, J. G. Impacts of surface roughness and loading conditions on cyclic direct shear behaviors of an artificial frozen silt-structure interface[J]. Cold Regions Science and Technology. 106-107: 183-193 (2014).
42. Potter, R. S., Cammack, J. M., Braithwaite, C. H., et al. A study of the compressive mechanical properties of defect-free, porous and sintered water-ice at low and high strain rates[J]. Icarus. 351: 113940 (2020)
43. Zhu, Z., Fu, T., Zhou, Z., et al. Research on Ottosen constitutive model of frozen soil under impact load [J]. International Journal of Rock Mechanics and Mining Sciences. 137: 104544 (2021).
44. John, M.L, Ali, S., Prasad, C.R.V., Mahdiyeh, S., et al. Adfreeze strength of wooden piles in warm permafrost Soil [J] Journal of Cold Regions Engineering. 37(2), (2023).
45. Xie, Q., Su, L., Zhu, Z. Dynamic constitutive model of frozen soil that considers the evolution of volume fraction of ice [J]. Scientific Reports.10(1): 1-11 (2020).
46. Zhang, F., Zhu, Z., Ma, W., et al. A unified viscoplastic model and strain rate–temperature equivalence of frozen soil under impact loading [J]. Journal of the mechanics and physics of solids. 152: 104413 (2021).
47. Wu, Y. P., Su, Q.,Guo, C. X., et al. Nonlinear analysis of ground refreezing process for pile group bridge foundation in Permafrost [J]. China Civil Engineering Journal. 39(2): 78-84 (2006).
48. Tang, L. Y., Yang, G. S. Thermal effects of pile construction on pile foundation in permafrost regions [J]. Chinese Journal of Geotechnical Engineering. 32(9):1350-1353 (2010).
49. Li, X. H., Yang, Y. P., Wei, Q. C. Numerical simulation of pile foundation conduction at different molding temperature in permafrost regions[J]. Journal of Beijing Jiaotong University. 29(1):9-13 (2005).
50. Wang, X., Jiang, D. J., Liu, D. R., et al. Experimental study of bearing characteristics of large-diameter cast-in-place bored pile under non-refreezing condition in low-temperature permafrost ground [J]. Chinese Journal of Rock Mechanics and Engineering. 32(9):1807-1812 (2013).
51. Song, C. J., Dai, C. L., Gao, Y. Q., et al. Spatial-temporal characteristics of freezing/thawing index and permafrost distribution in Heilongjiang province, China[J] Sustainability. 14(24):16899-16899 (2022).
52. Ketil, I., Julia, L., Macdonald, A., et al. Advances in operational permafrost monitoring on Svalbard and in Norway [J]. Environmental Research Letters. 17(9), DOI:10.1088/1748-9326/AC8E1C (2022).
53. Static Loading Test of foundation pile-Self-balanced Method (JT/T738-2009) [S]. China , (2009).