1 Olton, D. S. & Samuelson, R. J. Remembrance of Places Passed - Spatial Memory in Rats. J Exp Psychol-Anim B 2, 97-116, doi:Doi 10.1037/0097-7403.2.2.97 (1976).
2 Kraemer, P. J., Gilbert, M.E. & Innis, N.K. The influence of cue type and configuration upon radial-maze performance in the rat. Animal Learning & Behavior 11, 373–380, doi:https://doi.org/10.3758/BF03199790(1983).
3 Wenk, G. L. Assessment of spatial memory using the radial arm maze and Morris water maze. Curr Protoc Neurosci Chapter 8, Unit 8 5A, doi:10.1002/0471142301.ns0805as26 (2004).
4 Morris, R. G. M. Spatial Localization Does Not Require the Presence of Local Cues. Learn Motiv 12, 239-260, doi:Doi 10.1016/0023-9690(81)90020-5 (1981).
5 Buresova, O., Bures, J., Oitzl, M. S. & Zahalka, A. Radial maze in the water tank: an aversively motivated spatial working memory task. Physiol Behav 34, 1003-1005, doi:10.1016/0031-9384(85)90028-9 (1985).
6 Buresova, O., Bolhuis, J. J. & Bures, J. Differential effects of cholinergic blockade on performance of rats in the water tank navigation task and in a radial water maze. Behav Neurosci 100, 476-482, doi:10.1037//0735-7044.100.4.476 (1986).
7 Olton, D. S., Branch, M. & Best, P. J. Spatial correlates of hippocampal unit activity. Exp Neurol 58, 387-409, doi:10.1016/0014-4886(78)90096-1 (1978).
8 Olton, D. S., Walker, J. A. & Gage, F. H. Hippocampal connections and spatial discrimination. Brain Res 139, 295-308, doi:10.1016/0006-8993(78)90930-7 (1978).
9 Olton, D. S. & Werz, M. A. Hippocampal function and behavior: spatial discrimination and response inhibition. Physiol Behav 20, 597-605, doi:10.1016/0031-9384(78)90252-4 (1978).
10 Olton, D. S. & Papas, B. C. Spatial memory and hippocampal function. Neuropsychologia 17, 669-682, doi:10.1016/0028-3932(79)90042-3 (1979).
11 Honig, W. K. Studies of Working Memory in the Pigeon. 1 edn, 38 (1978).
12 Harper, D. N., Dalrymple-Alford, J. C. & McLean, A. P. Production of a serial position effect in rats using a 12-arm radial maze. J Neurosci Methods 44, 197-207, doi:10.1016/0165-0270(92)90011-2 (1992).
13 Schmitt, W. B., Deacon, R. M., Seeburg, P. H., Rawlins, J. N. & Bannerman, D. M. A within-subjects, within-task demonstration of intact spatial reference memory and impaired spatial working memory in glutamate receptor-A-deficient mice. The Journal of neuroscience : the official journal of the Society for Neuroscience 23, 3953-3959 (2003).
14 Brown, M. F. The effects of maze-arm length on performance in the radial-arm maze. Animal Learning & Behavior 18, 13-22, doi:doi.org/10.3758/BF03205234 (1990).
15 Sasaki, T. et al. Dentate network activity is necessary for spatial working memory by supporting CA3 sharp-wave ripple generation and prospective firing of CA3 neurons. Nat Neurosci 21, 258-269, doi:10.1038/s41593-017-0061-5 (2018).
16 Jew, K. et al. Selective memory and behavioral alterations after ambient ultrafine particulate matter exposure in aged 3xTgAD Alzheimer's disease mice. Part Fibre Toxicol 16, 45, doi:10.1186/s12989-019-0323-3 (2019).
17 Rai, R., Singh, H. K. & Prasad, S. A Special Extract of Bacopa monnieri (CDRI-08) Restores Learning and Memory by Upregulating Expression of the NMDA Receptor Subunit GluN2B in the Brain of Scopolamine-Induced Amnesic Mice. Evid Based Complement Alternat Med 2015, 254303, doi:10.1155/2015/254303 (2015).
18 Harvey, R. E., Thompson, S. M., Sanchez, L. M., Yoder, R. M. & Clark, B. J. Post-training Inactivation of the Anterior Thalamic Nuclei Impairs Spatial Performance on the Radial Arm Maze. Front Neurosci 11, 94, doi:10.3389/fnins.2017.00094 (2017).
19 G. Brolese, P. L., F. Lopes, C.-A. Gonçalves. Chapter 2 - Prenatal Alcohol Exposure and Neuroglial Changes in Neurochemistry and Behavior in Animal Models. 11-22 (Academic Press, 2017).
20 Christina J. Reppucci⁎, L. A. B., Ashley Q. Chambers, Alexa H. Veenema. Wistar rats and C57BL/6 mice differ in their motivation to seek social interaction versus food in the Social versus Food Preference Test. Physiology & Behvior 227, doi:doi.org/10.1016/j.physbeh.2020.113162 (2020).
21 Whishaw, I. Q. & Tomie, J. Of mice and mazes: similarities between mice and rats on dry land but not water mazes. Physiol Behav 60, 1191-1197, doi:10.1016/s0031-9384(96)00176-x (1996).
22 Cressant, A., Besson, M., Suarez, S., Cormier, A. & Granon, S. Spatial learning in Long-Evans Hooded rats and C57BL/6J mice: different strategies for different performance. Behavioural brain research 177, 22-29, doi:10.1016/j.bbr.2006.11.010 (2007).
23 Hok, V., Poucet, B., Duvelle, E., Save, E. & Sargolini, F. Spatial cognition in mice and rats: similarities and differences in brain and behavior. Wiley Interdiscip Rev Cogn Sci 7, 406-421, doi:10.1002/wcs.1411 (2016).
24 Bisby, M. A., Stylianakis, A. A., Baker, K. D. & Richardson, R. Fear extinction learning and retention during adolescence in rats and mice: A systematic review. Neurosci Biobehav Rev 131, 1264-1274, doi:10.1016/j.neubiorev.2021.10.044 (2021).
25 Mizuno, M., Yamada, K., Olariu, A., Nawa, H. & Nabeshima, T. Involvement of brain-derived neurotrophic factor in spatial memory formation and maintenance in a radial arm maze test in rats. The Journal of neuroscience : the official journal of the Society for Neuroscience 20, 7116-7121, doi:10.1523/JNEUROSCI.20-18-07116.2000 (2000).
26 Ellenbroek, B. & Youn, J. Rodent models in neuroscience research: is it a rat race? Dis Model Mech 9, 1079-1087, doi:10.1242/dmm.026120 (2016).
27 Hefner, K. & Holmes, A. Ontogeny of fear-, anxiety- and depression-related behavior across adolescence in C57BL/6J mice. Behavioural brain research 176, 210-215, doi:10.1016/j.bbr.2006.10.001 (2007).
28 Pattwell, S. S. et al. Altered fear learning across development in both mouse and human. Proceedings of the National Academy of Sciences of the United States of America 109, 16318-16323, doi:10.1073/pnas.1206834109 (2012).
29 Pattwell, S. S. et al. Dynamic changes in neural circuitry during adolescence are associated with persistent attenuation of fear memories. Nat Commun 7, 11475, doi:10.1038/ncomms11475 (2016).
30 Riddle, M. C. et al. Caloric restriction enhances fear extinction learning in mice. Neuropsychopharmacology 38, 930-937, doi:10.1038/npp.2012.268 (2013).
31 Cruz, E., Lopez, A. V. & Porter, J. T. Spontaneous recovery of fear reverses extinction-induced excitability of infralimbic neurons. PloS one 9, e103596, doi:10.1371/journal.pone.0103596 (2014).
32 Barbayannis, G. et al. Differential effects of stress on fear learning and activation of the amygdala in pre-adolescent and adult male rats. Neuroscience 360, 210-219, doi:10.1016/j.neuroscience.2017.07.058 (2017).
33 Chen, C. V., Chaby, L. E., Nazeer, S. & Liberzon, I. Effects of Trauma in Adulthood and Adolescence on Fear Extinction and Extinction Retention: Advancing Animal Models of Posttraumatic Stress Disorder. Front Behav Neurosci 12, 247, doi:10.3389/fnbeh.2018.00247 (2018).
34 Schipper, P. et al. Impaired Fear Extinction Recall in Serotonin Transporter Knockout Rats Is Transiently Alleviated during Adolescence. Brain Sci 9, doi:10.3390/brainsci9050118 (2019).
35 Ishiyama, S. & Brecht, M. Neural correlates of ticklishness in the rat somatosensory cortex. Science 354, 757-760, doi:10.1126/science.aah5114 (2016).
36 Borrow, A. P., Bales, N. J., Stover, S. A. & Handa, R. J. Chronic Variable Stress Induces Sex-Specific Alterations in Social Behavior and Neuropeptide Expression in the Mouse. Endocrinology 159, 2803-2814, doi:10.1210/en.2018-00217 (2018).
37 Gouveia, K. & Hurst, J. L. Reducing mouse anxiety during handling: effect of experience with handling tunnels. PloS one 8, e66401, doi:10.1371/journal.pone.0066401 (2013).
38 Gouveia, K. & Hurst, J. L. Optimising reliability of mouse performance in behavioural testing: the major role of non-aversive handling. Sci Rep 7, 44999, doi:10.1038/srep44999 (2017).
39 Gouveia, K. & Hurst, J. L. Improving the practicality of using non-aversive handling methods to reduce background stress and anxiety in laboratory mice. Sci Rep 9, 20305, doi:10.1038/s41598-019-56860-7 (2019).
40 Walf, A. A. & Frye, C. A. The use of the elevated plus maze as an assay of anxiety-related behavior in rodents. Nature protocols 2, 322-328, doi:10.1038/nprot.2007.44 (2007).
41 Võikar, V., Stanford, S.C. The Open Field Test. Vol. Neuromethods 190 9-29 (Humana, New York, NY, 2023).
42 Haga, Y. Effects of food deprivation and food reward on the behavior of rats in the radial-arm maze. Jpn Psychol Res 37, 252-257, doi:DOI 10.4992/psycholres1954.37.252 (1995).
43 David S. Olton, C. C., Mary Ann Werz. Spatial memory and radial arm maze performance of rats. Learn Motiv 8, 289-314, doi:10.1016/0023-9690(77)90054-6 (1977).
44 Vorhees, C. V. & Williams, M. T. Assessing spatial learning and memory in rodents. ILAR J 55, 310-332, doi:10.1093/ilar/ilu013 (2014).
45 Hebert, M., Bulla, J., Vivien, D. & Agin, V. Are Distal and Proximal Visual Cues Equally Important during Spatial Learning in Mice? A Pilot Study of Overshadowing in the Spatial Domain. Front Behav Neurosci 11, 109, doi:10.3389/fnbeh.2017.00109 (2017).
46 Bannerman, D. M. et al. Dissecting spatial knowledge from spatial choice by hippocampal NMDA receptor deletion. Nat Neurosci 15, 1153-1159, doi:10.1038/nn.3166 (2012).
47 Bannerman, D. M. et al. Hippocampal synaptic plasticity, spatial memory and anxiety. Nat Rev Neurosci 15, 181-192, doi:10.1038/nrn3677 (2014).
48 Takeuchi, H. et al. Training of working memory impacts structural connectivity. The Journal of neuroscience : the official journal of the Society for Neuroscience 30, 3297-3303, doi:10.1523/JNEUROSCI.4611-09.2010 (2010).
49 Takahiro Shimizu, S. G. N., Matthew Swire, Yi Jiang, Matthew Grist, Malte Kaller, Cassandra Sampaio Baptista, David M Bannerman, Heidi Johansen-Berg, Katsutoshi Ogasawara, Koujiro Tohyama, Huiliang Li, William D Richardson. Oligodendrocyte dynamics dictate cognitive performance outcomes of working memory training in mice. Nature Communications (2023 (in press)).
50 Wu, D. et al. Persistent Neuronal Activity in Anterior Cingulate Cortex Correlates with Sustained Attention in Rats Regardless of Sensory Modality. Sci Rep 7, 43101, doi:10.1038/srep43101 (2017).
51 Steiner, A. P. & Redish, A. D. Behavioral and neurophysiological correlates of regret in rat decision-making on a neuroeconomic task. Nat Neurosci 17, 995-1002, doi:10.1038/nn.3740 (2014).
52 Sweis, B. M., Thomas, M. J. & Redish, A. D. Mice learn to avoid regret. PLoS Biol 16, e2005853, doi:10.1371/journal.pbio.2005853 (2018).
53 Sultana, R., Ogundele, O. M. & Lee, C. C. Contrasting characteristic behaviours among common laboratory mouse strains. R Soc Open Sci 6, 190574, doi:10.1098/rsos.190574 (2019).
54 Marchette, R. C. N., Bicca, M. A., Santos, E. & de Lima, T. C. M. Distinctive stress sensitivity and anxiety-like behavior in female mice: Strain differences matter. Neurobiol Stress 9, 55-63, doi:10.1016/j.ynstr.2018.08.002 (2018).
55 Brooks, S. P., Pask, T., Jones, L. & Dunnett, S. B. Behavioural profiles of inbred mouse strains used as transgenic backgrounds. I: motor tests. Genes Brain Behav 3, 206-215, doi:10.1111/j.1601-183X.2004.00072.x (2004).
56 Koike, H., Arguello, P. A., Kvajo, M., Karayiorgou, M. & Gogos, J. A. Disc1 is mutated in the 129S6/SvEv strain and modulates working memory in mice. Proceedings of the National Academy of Sciences 103, 3693-3697, doi:doi:10.1073/pnas.0511189103 (2006).
57 Gomez-Sintes, R., Kvajo, M., Gogos, J. A. & Lucas, J. J. Mice with a naturally occurring DISC1 mutation display a broad spectrum of behaviors associated to psychiatric disorders. Front Behav Neurosci 8, 253, doi:10.3389/fnbeh.2014.00253 (2014).
58 Clapcote, S. J. & Roder, J. C. Deletion polymorphism of Disc1 is common to all 129 mouse substrains: implications for gene-targeting studies of brain function. Genetics 173, 2407-2410, doi:10.1534/genetics.106.060749 (2006).
59 Pawluski, J. L., Kokras, N., Charlier, T. D. & Dalla, C. Sex matters in neuroscience and neuropsychopharmacology. Eur J Neurosci 52, 2423-2428, doi:10.1111/ejn.14880 (2020).
60 Gogos, A., Sbisa, A., Witkamp, D. & van den Buuse, M. Sex differences in the effect of maternal immune activation on cognitive and psychosis-like behaviour in Long Evans rats. Eur J Neurosci 52, 2614-2626, doi:10.1111/ejn.14671 (2020).
61 Espinosa-Garcia, C. et al. Sex differences in the performance of cognitive tasks in a murine model of metabolic syndrome. Eur J Neurosci 52, 2724-2736, doi:10.1111/ejn.14751 (2020).
62 Conner, M. R., Adeyemi, O. M., Anderson, B. J. & Kritzer, M. F. Domain-specific contributions of biological sex and sex hormones to what, where and when components of episodic-like memory in adult rats. Eur J Neurosci 52, 2705-2723, doi:10.1111/ejn.14676 (2020).
63 Sensini, F. et al. The impact of handling technique and handling frequency on laboratory mouse welfare is sex-specific. Sci Rep 10, 17281, doi:10.1038/s41598-020-74279-3 (2020).
64 Meaney, M. J. et al. Early environmental regulation of forebrain glucocorticoid receptor gene expression: implications for adrenocortical responses to stress. Dev Neurosci 18, 49-72, doi:10.1159/000111395 (1996).
65 Nunez, J. F., Ferre, P., Escorihuela, R. M., Tobena, A. & Fernandez-Teruel, A. Effects of postnatal handling of rats on emotional, HPA-axis, and prolactin reactivity to novelty and conflict. Physiol Behav 60, 1355-1359, doi:10.1016/s0031-9384(96)00225-9 (1996).
66 Balcombe, J. P., Barnard, N. D. & Sandusky, C. Laboratory routines cause animal stress. Contemp Top Lab Anim Sci 43, 42-51 (2004).
67 Meijer, M. K., Sommer, R., Spruijt, B. M., van Zutphen, L. F. & Baumans, V. Influence of environmental enrichment and handling on the acute stress response in individually housed mice. Lab Anim 41, 161-173, doi:10.1258/002367707780378168 (2007).
68 Ghosal, S. et al. Mouse handling limits the impact of stress on metabolic endpoints. Physiol Behav 150, 31-37, doi:10.1016/j.physbeh.2015.06.021 (2015).
69 Sandi, C. et al. Acute stress-induced impairment of spatial memory is associated with decreased expression of neural cell adhesion molecule in the hippocampus and prefrontal cortex. Biol Psychiatry 57, 856-864, doi:10.1016/j.biopsych.2004.12.034 (2005).
70 Tulving, E. in Organization of Memory (ed E. Tulving & W. Donaldson) (Academic Press, 1972).
71 Panoz-Brown, D. et al. Rats Remember Items in Context Using Episodic Memory. Curr Biol 26, 2821-2826, doi:10.1016/j.cub.2016.08.023 (2016).
72 Fellini, L. & Morellini, F. Mice create what-where-when hippocampus-dependent memories of unique experiences. The Journal of neuroscience : the official journal of the Society for Neuroscience 33, 1038-1043, doi:10.1523/JNEUROSCI.2280-12.2013 (2013).
73 Sorge, R. E. et al. Olfactory exposure to males, including men, causes stress and related analgesia in rodents. Nat Methods 11, 629-632, doi:10.1038/nmeth.2935 (2014).
74 Prior, H. Effects of the acoustic environment on learning in rats. Physiol Behav 87, 162-165, doi:10.1016/j.physbeh.2005.09.012 (2006).
75 Prior, H., Schwegler, H. & Ducker, G. Dissociation of spatial reference memory, spatial working memory, and hippocampal mossy fiber distribution in two rat strains differing in emotionality. Behavioural brain research 87, 183-194, doi:10.1016/s0166-4328(97)02282-1 (1997).
76 Lai, H. Acute exposure to noise affects sodium-dependent high-affinity choline uptake in the central nervous system of the rat. Pharmacol Biochem Behav 28, 147-151, doi:10.1016/0091-3057(87)90205-x (1987).
77 Granon, S., Poucet, B., Thinus-Blanc, C., Changeux, J. P. & Vidal, C. Nicotinic and muscarinic receptors in the rat prefrontal cortex: differential roles in working memory, response selection and effortful processing. Psychopharmacology (Berl) 119, 139-144, doi:10.1007/BF02246154 (1995).
78 Tordoff, M. G., Pilchak, D. M., Williams, J. A., McDaniel, A. H. & Bachmanov, A. A. The maintenance diets of C57BL/6J and 129X1/SvJ mice influence their taste solution preferences: implications for large-scale phenotyping projects. J Nutr 132, 2288-2297, doi:10.1093/jn/132.8.2288 (2002).
79 Yamamoto, J., Suh, J., Takeuchi, D. & Tonegawa, S. Successful execution of working memory linked to synchronized high-frequency gamma oscillations. Cell 157, 845-857, doi:10.1016/j.cell.2014.04.009 (2014).
80 Salari, A. A., Samadi, H., Homberg, J. R. & Kosari-Nasab, M. Small litter size impairs spatial memory and increases anxiety- like behavior in a strain-dependent manner in male mice. Sci Rep 8, 11281, doi:10.1038/s41598-018-29595-0 (2018).