1. Kneyber MCJ, de Luca D, Calderini E, Jarreau PH, Javouhey E, Lopez-Herce J, Hammer J, Macrae D, Markhorst DG, Medina A, Pons-Odena M, Racca F, Wolf G, Biban P, Brierley J, Rimensberger PC; section Respiratory Failure of the European Society for Paediatric and Neonatal Intensive Care. Recommendations for mechanical ventilation of critically ill children from the Paediatric Mechanical Ventilation Consensus Conference (PEMVECC).Intensive Care Med. 2017 Dec;43(12):1764-1780. doi: 10.1007/s00134-017-4920-z. Epub 2017 Sep 22.
2. Mitra S, Singh B, El-Naggar W, McMillan DD. Automated versus manual control of inspired oxygen to target oxygen saturation in preterm infants: a systematic review and meta- analysis. J Perinatol. 2018 Apr;38(4):351-360. doi: 10.1038/s41372-017-0037-z. Epub 2018 Jan 2.
3. Reynolds PR, Miller TL, Volakis LI, Holland N, Dungan GC, Roehr CC, Ives K. Randomised cross-over study of automated oxygen control for preterm infants receiving nasal high flow. Arch Dis Child Fetal Neonatal Ed. 2019 Jul;104(4):F366-F371. doi: 10.1136/archdischild- 2018-315342. Epub 2018 Nov 21.
4. Van Kaam AH, Hummler HD, Wilinska M, Swietlinski J, Lal MK, te Pas AB, Lista G, Gupta S, Fajardo CA, Onland W, Waitz M, Warakomska M, Cavigioli F, Bancalari E, Claure N, Bachman TE. Automated versus Manual Oxygen Control with Different Saturation Targets and Modes of Respiratory Support in Preterm Infants. J Pediatr. 2015 Sep;167(3):545- 50.e1-2. doi: 10.1016/j.jpeds.2015.06.012. Epub 2015 Jul 2.
5. Lui K, Jones LJ, Foster JP, Davis PG, Ching SK, Oei JL, Osborn DA. Lower versus higher oxygen concentrations titrated to target oxygen saturations during resuscitation of preterm infants at birth. Cochrane Database Syst Rev. 2018 May 4;5:CD010239. doi: 10.1002/14651858.CD010239.pub2. Review.
6. Maiwald CA, Niemarkt HJ, Poets CF, Urschitz MS, König J, Hummler H, Bassler D, Engel C, Franz AR; FiO2-C Study Group. Effects of closed-loop automatic control of the inspiratory fraction of oxygen (FiO(2)-C) on outcome of extremely preterm infants - study protocol of a randomized controlled parallel group multicenter trial for safety and efficacy. BMC Pediatr. 2019 Oct 21;19(1):363. doi: 10.1186/s12887-019-1735-9.
7. Arnal JM, Garnero A, Novotni D, Corno G, Donati SY, Demory D, Quintana G, Ducros L, Laubscher T, Durand-Gasselin J, (2018) Closed loop ventilation mode in Intensive Care Unit: a randomized controlled clinical trial comparing the numbers of manual ventilator setting changes. Minerva Anestesiol 84: 58-67
8. Griffin KM, Karas MG, Ivascu NS, Lief L, (2020) Hospital Preparedness for COVID-19: A Practical Guide from a Critical Care Perspective. Am J Respir Crit Care Med 201: 1337-1344
9. Harper JC, Kearns NA, Maijers I, Bird GE, Braithwaite I, Shortt NP, Eathorne A, Weatherall M, Beasley R, (2021) Closed-Loop Oxygen Control Using a Novel Nasal High-Flow Device: A Randomized Crossover Trial. Respir Care 66: 416-424
10. Harper J, Kearns N, Bird G, Braithwaite I, Eathorne A, Shortt N, Weatherall M, Beasley R, (2021) Automatic versus manual oxygen titration using a novel nasal high-flow device in medical inpatients with an acute illness: a randomised controlled trial. BMJ Open Respir Res 8
11. Soydan E, Ceylan G, Topal S, et al. Automated closed–loop FiO2 titration increases the percentage of time spent in optimal zones of oxygen saturation in pediatric patients–A randomized crossover clinical trial. Frontiers in medicine 2022; 9.
12. Ceylan G, Topal S, Atakul G, et al. Randomized crossover trial to compare driving pressures in a closed-loop and a conventional mechanical ventilation mode in pediatric patients. Pediatric Pulmonology 2020; n/a(n/a).
13. Sandal O, Ceylan G, Topal S, et al. Closed–loop oxygen control improves oxygenation in pediatric patients under high–flow nasal oxygen—A randomized crossover study. Frontiers in medicine 2022; 9.