[1] Lau, J.L., Dunn, M.K.: Therapeutic peptides: Historical perspectives,current development trends, and future directions. Bioorganic and Medic-inal Chemistry26(10), 2700–2707 (2018). https://doi.org/10.1016/j.bmc.2017.06.052. Peptide Therapeutics
[2] Xiao, X., Wang, Y., Seroski, D.T., Wong, K.M., Liu, R., Paravastu, A.K.,Hudalla, G.A., Hall, C.K.: De novo design of peptides that coassembleintoβsheet-based nanofibrils. Sci Adv7(36), 7668 (2021)
[3] Eustache, S., Leprince, J., Tuff ́ery, P.: Progress with peptide scanning tostudy structure-activity relationships: the implications for drug discovery.Expert Opin Drug Discov11(8), 771–784 (2016)
[4] Lyu, W., Deng, Z., Sunkara, L.T., Becker, S., Robinson, K., Matts, R.,Zhang, G.: High throughput screening for natural host defense peptide-inducing compounds as novel alternatives to antibiotics. Frontiers inCellular and Infection Microbiology8(2018). https://doi.org/10.3389/fcimb.2018.00191
[5] Valiente, P.A., Wen, H., Nim, S., Lee, J., Kim, H.J., Kim, J., Perez-Riba,A., Paudel, Y.P., Hwang, I., Kim, K.-D., Kim, S., Kim, P.M.: Computa-tional design of potent D-Peptide inhibitors of SARS-CoV-2. J Med Chem64(20), 14955–14967 (2021)
[6] Raveh, B., London, N., Zimmerman, L., Schueler-Furman, O.: RosettaFlexPepDock ab-initio: simultaneous folding, docking and refinement ofpeptides onto their receptors. PLoS One6(4), 18934 (2011)
[7] Morgan, H.L.: The generation of a unique machine description for chemi-cal structures-a technique developed at chemical abstracts service. Journalof Chemical Documentation5(2), 107–113 (1965). https://doi.org/10.1021/c160017a018
[8] Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molec-ular features in structure-activity studies: definition and applications.Journal of Chemical Information and Computer Sciences25(2), 64–73(1985). https://doi.org/10.1021/ci00046a002
[9] Capecchi, A., Probst, D., Reymond, J.-L.: One molecular fingerprintto rule them all: drugs, biomolecules, and the metabolome. Jour-nal of Cheminformatics12(1), 43 (2020). https://doi.org/10.1186/s13321-020-00445-4
[10] Hochreiter, S., Schmidhuber, J.: Long short-term memory9(8) (1997).https://doi.org/10.1162/neco.1997.9.8.1735
[11] Chung, J., Gulcehre, C., Cho, K., Bengio, Y.: Empirical evaluation ofgated recurrent neural networks on sequence modeling. In: NIPS 2014Workshop on Deep Learning, December 2014 (2014)
[12] Mnih, V., Heess, N., Graves, A., Kavukcuoglu, K.: Recurrent models ofvisual attention. NIPS’14. MIT Press, Cambridge, MA, USA (2014)
[13] Feinberg, E.N., Sur, D., Wu, Z., Husic, B.E., Mai, H., Li, Y., Sun, S.,Yang, J., Ramsundar, B., Pande, V.S.: Potentialnet for molecular propertyprediction. ACS Central Science4(11), 1520–1530 (2018). https://doi.org/10.1021/acscentsci.8b00507
[14] Li, C., Feng, J., Liu, S., Yao, J.: A novel molecular representation learn-ing for molecular property prediction with a multiple SMILES-Basedaugmentation. Comput Intell Neurosci2022, 8464452 (2022)
[15] Paul, A., Jha, D., Al-Bahrani, R., Liao, W.-k., Choudhary, A.N., Agrawal,A.: Chemixnet: Mixed dnn architectures for predicting chemical prop-erties using multiple molecular representations. ArXivabs/1811.08283(2018)
[16] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez,A.N., Kaiser, L.u., Polosukhin, I.: Attention is all you need. In:Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vish-wanathan, S., Garnett, R. (eds.) Advances in Neural InformationProcessing Systems, vol. 30. Curran Associates, Inc., ??? (2017).https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
[17] Brandes,N.,Ofer,D.,Peleg,Y.,Rappoport,N.,Linial,M.:ProteinBERT:auniversaldeep-learningmodelofpro-teinsequenceandfunction.Bioinformatics38(8),2102–2110(2022)https://academic.oup.com/bioinformatics/article-pdf/38/8/2102/45474534/btac020.pdf.https://doi.org/10.1093/bioinformatics/btac020
[18] Elnaggar, A., Heinzinger, M., Dallago, C., Rehawi, G., Wang, Y., Jones,L., Gibbs, T., Feher, T., Angerer, C., Steinegger, M., Bhowmik, D., Rost,B.: ProtTrans: Toward understanding the language of life through Self-Supervised learning. IEEE Trans Pattern Anal Mach Intell44(10), 7112–7127 (2022)
[19] Guo, Z., Nan, B., Tian, Y., Wiest, O., Zhang, C., Chawla, N.V.: Graph-based Molecular Representation Learning. arXiv (2022). https://doi.org/10.48550/ARXIV.2207.04869. https://arxiv.org/abs/2207.04869
[20] Fang, X., Liu, L., Lei, J., He, D., Zhang, S., Zhou, J., Wang, F., Wu,H., Wang, H.: Geometry-enhanced molecular representation learning forproperty prediction. Nature Machine Intelligence4(2), 127–134 (2022).https://doi.org/10.1038/s42256-021-00438-4
[21] Wang, Y., Wang, J., Cao, Z., Barati Farimani, A.: Molecular con-trastive learning of representations via graph neural networks. NatureMachine Intelligence4(3), 279–287 (2022). https://doi.org/10.1038/s42256-022-00447-x
[22] Yang, K., Swanson, K., Jin, W., Coley, C., Eiden, P., Gao, H., Guzman-Perez, A., Hopper, T., Kelley, B., Mathea, M., Palmer, A., Settels, V.,Jaakkola, T., Jensen, K., Barzilay, R.: Analyzing learned molecular rep-resentations for property prediction. Journal of Chemical Informationand Modeling59(8), 3370–3388 (2019). https://doi.org/10.1021/acs.jcim.9b00237
[23] Bjerrum, E.J., Threlfall, R.: Molecular generation with recurrent neuralnetworks (rnns). ArXivabs/1705.04612(2017)
[24] Bagal, V., Aggarwal, R., Vinod, P.K., Priyakumar, U.D.: Molgpt: Molec-ular generation using a transformer-decoder model. Journal of ChemicalInformation and Modeling62(9), 2064–2076 (2022). https://doi.org/10.1021/acs.jcim.1c00600
[25] Popova, M., Isayev, O., Tropsha, A.: Deep reinforcement learn-ing for de novo drug design. Science Advances4(7), 7885(2018)https://www.science.org/doi/pdf/10.1126/sciadv.aap7885.https://doi.org/10.1126/sciadv.aap7885
[26] Wang, F., Feng, X., Guo, X., Xu, L., Xie, L., Chang, S.: Improving denovo molecule generation by embedding lstm and attention mechanism incyclegan. Frontiers in Genetics12(2021). https://doi.org/10.3389/fgene.2021.709500
[27] Wu, Z., Johnston, K.E., Arnold, F.H., Yang, K.K.: Protein sequencedesign with deep generative models. Current Opinion in Chemical Biology65, 18–27 (2021). https://doi.org/10.1016/j.cbpa.2021.04.004. Mechanis-tic Biology * Machine Learning in Chemical Biology
[28] Anand, N., Eguchi, R., Mathews, I.I., Perez, C.P., Derry, A., Altman,R.B., Huang, P.-S.: Protein sequence design with a learned poten-tial. Nature Communications13(1), 746 (2022). https://doi.org/10.1038/s41467-022-28313-9
[29] Das, P., Sercu, T., Wadhawan, K., Padhi, I., Gehrmann, S., Cipcigan,F., Chenthamarakshan, V., Strobelt, H., dos Santos, C., Chen, P.-Y.,Yang, Y.Y., Tan, J.P.K., Hedrick, J., Crain, J., Mojsilovic, A.: Acceleratedantimicrobial discovery via deep generative models and molecular dynam-ics simulations. Nature Biomedical Engineering5(6), 613–623 (2021).https://doi.org/10.1038/s41551-021-00689-x
[30] Castro, E., Godavarthi, A., Rubinfien, J., Givechian, K., Bhaskar, D.,Krishnaswamy, S.: Transformer-based protein generation with regularizedlatent space optimization. Nature Machine Intelligence (2022). https://doi.org/10.1038/s42256-022-00532-1
[31] Tolstikhin, I., Bousquet, O., Gelly, S., Sch ̈olkopf, B.: Wasserstein Auto-Encoders. In: 6th International Conference on Learning Representations(ICLR) (2018).https://openreview.net/forum?id=HkL7n1-0b
[32] Igel, C., Hansen, N., Roth, S.: Covariance matrix adaptation for multi-objective optimization. Evolutionary Computation15(1), 1–28 (2007).https://doi.org/10.1162/evco.2007.15.1.1
[33] Kyte, J., Doolittle, R.F.: A simple method for displaying the hydropathiccharacter of a protein. J Mol Biol157(1), 105–132 (1982)
[34] Chaudhury, S., Berrondo, M., Weitzner, B.D., Muthu, P., Bergman, H.,Gray, J.J.: Benchmarking and analysis of protein docking performance inrosetta v3.2. PLoS One6(8), 22477 (2011)
[35] Andreatta, M., Alvarez, B., Nielsen, M.: Gibbscluster: unsupervised clus-tering and alignment of peptide sequences. Nucleic acids research45(W1),458–463 (2017)
[36] Thomsen, M., Nielsen, M.: Seq2logo: A method for construction and visu-alization of amino acid binding motifs and sequence profiles includingsequence weighting, pseudo counts and two-sided representation of aminoacid enrichment and depletion. Nucleic acids research40, 281–7 (2012).https://doi.org/10.1093/nar/gks469
[37] Seo, S., Choi, J., Park, S., Ahn, J.: Binding affinity prediction for protein–ligand complex using deep attention mechanism based on intermolecularinteractions. BMC Bioinformatics22(1), 542 (2021). https://doi.org/10.1186/s12859-021-04466-0
[38] Wang, K., Zhou, R., Li, Y., Li, M.: DeepDTAF: a deep learn-ing method to predict protein–ligand binding affinity. Briefingsin Bioinformatics22(5) (2021) https://academic.oup.com/bib/article-pdf/22/5/bbab072/40261745/bbab072.pdf. https://doi.org/10.1093/bib/bbab072. bbab072
[39] Rezaei, M.A., Li, Y., Wu, D., Li, X., Li, C.: Deep learning in drug design:Protein-Ligand binding affinity prediction. IEEE/ACM Trans ComputBiol Bioinform19(1), 407–417 (2022)
[40] Webb, B., Sali, A.: Comparative protein structure modeling using mod-eller. Current protocols in bioinformatics54(1), 5–6 (2016)
[41] Wang, E., Sun, H., Wang, J., Wang, Z., Liu, H., Zhang, J.Z., Hou, T.:End-point binding free energy calculation with mm/pbsa and mm/gbsa:strategies and applications in drug design. Chemical reviews119(16),9478–9508 (2019)
[42] Barlow, K.A., O Conchuir, S., Thompson, S., Suresh, P., Lucas, J.E.,Heinonen, M., Kortemme, T.: Flex ddg: Rosetta ensemble-based estima-tion of changes in protein–protein binding affinity upon mutation. TheJournal of Physical Chemistry B122(21), 5389–5399 (2018)[43] Chaudhury, S., Lyskov, S., Gray, J.J.: Pyrosetta: a script-based inter-face for implementing molecular modeling algorithms using rosetta.Bioinformatics26(5), 689–691 (2010)[44] Hansen, N.: The CMA evolution strategy: A tutorial. CoRRabs/1604.00772(2016) 1604.00772[45] Auger, A., Hansen, N.: A restart cma evolution strategy with increasingpopulation size. In: 2005 IEEE Congress on Evolutionary Computa-tion, vol. 2, pp. 1769–17762 (2005). https://doi.org/10.1109/CEC.2005.1554902[46] Hansen, N., Ostermeier, A.: Completely derandomized self-adaptationin evolution strategies. Evolutionary Computation9(2), 159–195 (2001).https://doi.org/10.1162/106365601750190398[47] Andreatta, M., Lund, O., Nielsen, M.: Simultaneous alignment and clus-tering of peptide data using a Gibbs sampling approach. Bioinformatics29(1), 8–14 (2012) https://academic.oup.com/bioinformatics/article-pdf/29/1/8/17100983/bts621.pdf.