1. Lathrop, G. M., Lalouel, J. M., Julier, C. & Ott, J. Strategies for multilocus linkage analysis in humans. Proceedings of the National Academy of Sciences of the United States of America 81, 3443-3446, doi:10.1073/pnas.81.11.3443 (1984).
2. Petrukhin, K. E. et al.A microsatellite genetic linkage map of human chromosome 13. Genomics 15, 76-85, doi:10.1006/geno.1993.1012 (1993).
3. Bycroft, C. et al. The UK Biobank resource with deep phenotyping and genomic data. Nature 562, 203-209, doi:10.1038/s41586-018-0579-z (2018).
4. Cohen, D., Chumakov, I. & Weissenbach, J. A first-generation physical map of the human genome. Nature 366, 698-701, doi:10.1038/366698a0 (1993).
5. Hudson, T. J. et al. An STS-based map of the human genome. Science (New York, N.Y.) 270, 1945-1954, doi:10.1126/science.270.5244.1945 (1995).
6. Matthews, D. et al.Evidence that a locus for familial psoriasis maps to chromosome 4q. Nat Genet 14, 231-233, doi:10.1038/ng1096-231 (1996).
7. Weber, J. L. & May, P. E. Abundant class of human DNA polymorphisms which can be typed using the polymerase chain reaction. American journal of human genetics 44, 388-396 (1989).
8. Klebe, S. et al.Spastic paraplegia 5: Locus refinement, candidate gene analysis and clinical description. American journal of medical genetics. Part B, Neuropsychiatric genetics : the official publication of the International Society of Psychiatric Genetics 144b, 854-861, doi:10.1002/ajmg.b.30518 (2007).
9. Senee, V. et al.Mutations in GLIS3 are responsible for a rare syndrome with neonatal diabetes mellitus and congenital hypothyroidism. Nat Genet 38, 682-687, doi:10.1038/ng1802 (2006).
10. Deloukas, P. et al. A physical map of 30,000 human genes. Science (New York, N.Y.) 282, 744-746, doi:10.1126/science.282.5389.744 (1998).
11. Schuler, G. D. et al.A gene map of the human genome. Science (New York, N.Y.) 274, 540-546 (1996).
12. Zinovieva, E. et al.Comprehensive linkage and association analyses identify haplotype, near to the TNFSF15 gene, significantly associated with spondyloarthritis. PLoS Genet 5, e1000528, doi:10.1371/journal.pgen.1000528 (2009).
13. Parkinson, J. et al.Variation at the IRF2 gene and susceptibility to psoriasis in chromosome 4q-linked families. The Journal of investigative dermatology 122, 640-643, doi:10.1046/j.0022-202X.2004.22135.x (2004).
14. Willer, C. J., Li, Y. & Abecasis, G. R. METAL: fast and efficient meta-analysis of genomewide association scans. Bioinformatics (Oxford, England) 26, 2190-2191, doi:10.1093/bioinformatics/btq340 (2010).
15. International HapMap, C. The International HapMap Project. Nature 426, 789-796, doi:10.1038/nature02168 (2003).
16. International HapMap, C. A haplotype map of the human genome. Nature 437, 1299-1320, doi:10.1038/nature04226 (2005).
17. International HapMap, C.et al. A second generation human haplotype map of over 3.1 million SNPs. Nature 449, 851-861, doi:10.1038/nature06258 (2007).
18. Charon, C. M. & Dolphin, C. T. Sequence variation in the human flavin-containing monooxygenase 3 gene (FMO3): identification by denaturing-high performance liquid chromatography (DHPLC). Biochemical Society transactions 28, A435-A435, doi:https://doi.org/10.1042/bst028a435. From the 18th International Congress of Biochemistry and Molecular biology. Beyond the genome. (IUBMB International Union of Biochemistry and Molecular Biology/FEBS Congress : Program : Toxicology and xenobiochemistry. N°1588, July 20). July 16-20. Birmingham, UK. (2000).
19. Charon, C., Steventon, G. & Dolphin, C. New genetic variability of flavin containing monooxygenase 3 and its functional characterization. 54th Annual Meeting of the Amercian Society of Human Genetics. (ASHG : Program Nr 1526, October 29). October 26-30. Toronto, Ontario, Canada. Poster abstract n° 1526/F4: https://www.ashg.org/wp-content/uploads/2019/10/2004-poster-abstracts.pdf. , Page 1240 (2004).
20. Consortium., G. P. et al.An integrated map of genetic variation from 1,092 human genomes. Nature 491, 56-65, doi:10.1038/nature11632 (2012).
21. Bentley, D. R. et al.Accurate whole human genome sequencing using reversible terminator chemistry. Nature 456, 53-59, doi:10.1038/nature07517 (2008).
22. Rabbee, N. & Speed, T. P. A genotype calling algorithm for affymetrix SNP arrays. Bioinformatics (Oxford, England) 22, 7-12, doi:10.1093/bioinformatics/bti741 (2006).
23. Huc-Chabrolle, M. et al.Xq27 FRAXA locus is a strong candidate for dyslexia: evidence from a genome-wide scan in French families. Behavior genetics 43, 132-140, doi:10.1007/s10519-012-9575-5 (2013).
24. Caburet, S. et al.Genome-wide linkage in a highly consanguineous pedigree reveals two novel loci on chromosome 7 for non-syndromic familial Premature Ovarian Failure. PLoS One 7, e33412, doi:10.1371/journal.pone.0033412 (2012).
25. Schaid, D. J., Chen, W. & Larson, N. B. From genome-wide associations to candidate causal variants by statistical fine-mapping. Nat Rev Genet 19, 491-504, doi:10.1038/s41576-018-0016-z (2018).
26. Stocks, T. et al.TFAP2B -dietary protein and glycemic index interactions and weight maintenance after weight loss in the DiOGenes trial. Hum Hered 75, 213-219, doi:10.1159/000353591 (2013).
27. Matone, A. et al.Network Analysis of Metabolite GWAS Hits: Implication of CPS1 and the Urea Cycle in Weight Maintenance. PLoS One 11, e0150495, doi:10.1371/journal.pone.0150495 (2016).
28. Costantino, F. et al.Whole-genome single nucleotide polymorphism-based linkage analysis in spondyloarthritis multiplex families reveals a new susceptibility locus in 13q13. Annals of the rheumatic diseases 75, 1380-1385, doi:10.1136/annrheumdis-2015-207720 (2016).
29. Lambert, J. C. et al.Genome-wide association study identifies variants at CLU and CR1 associated with Alzheimer's disease. Nat Genet 41, 1094-1099, doi:10.1038/ng.439 (2009).
30. Marchini, J., Howie, B., Myers, S., McVean, G. & Donnelly, P. A new multipoint method for genome-wide association studies by imputation of genotypes. Nat Genet 39, 906-913, doi:10.1038/ng2088 (2007).
31. Li, Y., Willer, C., Sanna, S. & Abecasis, G. Genotype imputation. Annu Rev Genomics Hum Genet 10, 387-406, doi:10.1146/annurev.genom.9.081307.164242 (2009).
32. Spencer, C. C., Su, Z., Donnelly, P. & Marchini, J. Designing genome-wide association studies: sample size, power, imputation, and the choice of genotyping chip. PLoS Genet 5, e1000477, doi:10.1371/journal.pgen.1000477 (2009).
33. Anderson, C. A. et al.Evaluating the effects of imputation on the power, coverage, and cost efficiency of genome-wide SNP platforms. American journal of human genetics 83, 112-119, doi:10.1016/j.ajhg.2008.06.008 (2008).
34. Hao, K., Chudin, E., McElwee, J. & Schadt, E. E. Accuracy of genome-wide imputation of untyped markers and impacts on statistical power for association studies. BMC genetics 10, 27, doi:10.1186/1471-2156-10-27 (2009).
35. Darabi, H. et al. Fine scale mapping of the 17q22 breast cancer locus using dense SNPs, genotyped within the Collaborative Oncological Gene-Environment Study (COGs). Scientific reports 6, 32512, doi:10.1038/srep32512 (2016).
36. Orho-Melander, M. et al.Common missense variant in the glucokinase regulatory protein gene is associated with increased plasma triglyceride and C-reactive protein but lower fasting glucose concentrations. Diabetes 57, 3112-3121, doi:10.2337/db08-0516 (2008).
37. Vigorito, E. et al.Fine-Scale Mapping at 9p22.2 Identifies Candidate Causal Variants That Modify Ovarian Cancer Risk in BRCA1 and BRCA2 Mutation Carriers. PLoS One 11, e0158801, doi:10.1371/journal.pone.0158801 (2016).
38. Jonsson, T. et al. A mutation in APP protects against Alzheimer's disease and age-related cognitive decline. Nature 488, 96-99, doi:10.1038/nature11283 (2012).
39. Jonsson, T. et al.Variant of TREM2 associated with the risk of Alzheimer's disease. The New England journal of medicine 368, 107-116, doi:10.1056/NEJMoa1211103 (2013).
40. Lin, D. Y. & Zeng, D. Meta-analysis of genome-wide association studies: no efficiency gain in using individual participant data. Genetic epidemiology 34, 60-66, doi:10.1002/gepi.20435 (2010).
41. Willer, C. J. et al.Newly identified loci that influence lipid concentrations and risk of coronary artery disease. Nat Genet 40, 161-169, doi:10.1038/ng.76 (2008).
42. Collins, F. S. Reengineering Translational Science: The Time Is Right. Science Translational Medicine 3, 90cm17-90cm17, doi:doi:10.1126/scitranslmed.3002747 (2011).
43. Wain, L. V. et al.Genome-wide association analyses for lung function and chronic obstructive pulmonary disease identify new loci and potential druggable targets. Nat Genet 49, 416-425, doi:10.1038/ng.3787 (2017).
44. Lau, A. & So, H. C. Turning genome-wide association study findings into opportunities for drug repositioning. Computational and structural biotechnology journal 18, 1639-1650, doi:10.1016/j.csbj.2020.06.015 (2020).
45. Jhamb, D., Magid-Slav, M., Hurle, M. R. & Agarwal, P. Pathway analysis of GWAS loci identifies novel drug targets and repurposing opportunities. Drug discovery today 24, 1232-1236, doi:10.1016/j.drudis.2019.03.024 (2019).
46. Nagel, M. et al.Meta-analysis of genome-wide association studies for neuroticism in 449,484 individuals identifies novel genetic loci and pathways. Nat Genet 50, 920-927, doi:10.1038/s41588-018-0151-7 (2018).
47. Pericak-Vance, M. A. et al. Linkage studies in familial Alzheimer disease: evidence for chromosome 19 linkage. American journal of human genetics 48, 1034-1050 (1991).
48. Corder, E. H. et al.Gene dose of apolipoprotein E type 4 allele and the risk of Alzheimer's disease in late onset families. Science (New York, N.Y.) 261, 921-923, doi:10.1126/science.8346443 (1993).
49. Strittmatter, W. J. Apolipoprotein E and Alzheimer's disease: signal transduction mechanisms. Biochemical Society symposium, 101-109, doi:10.1042/bss0670101 (2001).
50. Saunders, A. M. et al.Association of apolipoprotein E allele epsilon 4 with late-onset familial and sporadic Alzheimer's disease. Neurology 43, 1467-1472, doi:10.1212/wnl.43.8.1467 (1993).
51. Farrer, L. A. et al.Effects of age, sex, and ethnicity on the association between apolipoprotein E genotype and Alzheimer disease. A meta-analysis. APOE and Alzheimer Disease Meta Analysis Consortium. Jama 278, 1349-1356 (1997).
52. Taubes, A. et al.Experimental and real-world evidence supporting the computational repurposing of bumetanide for APOE4-related Alzheimer’s disease. Nature Aging 1, 932-947, doi:10.1038/s43587-021-00122-7 (2021).
53. Jansen, I. E. et al.Genome-wide meta-analysis identifies new loci and functional pathways influencing Alzheimer's disease risk. Nat Genet 51, 404-413, doi:10.1038/s41588-018-0311-9 (2019).
54. Reay, W. R. & Cairns, M. J. Advancing the use of genome-wide association studies for drug repurposing. Nature Reviews Genetics 22, 658-671, doi:10.1038/s41576-021-00387-z (2021).
55. Dilthey, A. et al.Multi-population classical HLA type imputation. PLoS Comput Biol 9, e1002877, doi:10.1371/journal.pcbi.1002877 (2013).
56. Mavaddat, N. et al.Polygenic Risk Scores for Prediction of Breast Cancer and Breast Cancer Subtypes. American journal of human genetics 104, 21-34, doi:10.1016/j.ajhg.2018.11.002 (2019).
57. Frazer, K. A. et al. A second generation human haplotype map of over 3.1 million SNPs. Nature 449, 851-861, doi:10.1038/nature06258 (2007).
58. Huang, L. et al.Genotype-imputation accuracy across worldwide human populations. American journal of human genetics 84, 235-250, doi:10.1016/j.ajhg.2009.01.013 (2009).
59. Genomes Project, C. et al.A global reference for human genetic variation. Nature 526, 68-74, doi:10.1038/nature15393 (2015).
60. Sudmant, P. H. et al.An integrated map of structural variation in 2,504 human genomes. Nature 526, 75-81, doi:10.1038/nature15394 (2015).
61. Hehir-Kwa, J. Y. et al.A high-quality human reference panel reveals the complexity and distribution of genomic structural variants. Nat Commun 7, 12989, doi:10.1038/ncomms12989 (2016).
62. McCarthy, S. et al. A reference panel of 64,976 haplotypes for genotype imputation. Nat Genet 48, 1279-1283, doi:10.1038/ng.3643 (2016).
63. Delaneau, O., Marchini, J. & Consortium., T. G. P. Integrating sequence and array data to create an improved 1000 Genomes Project haplotype reference panel. Nat Commun 5, 3934, doi:10.1038/ncomms4934 (2014).
64. Iotchkova, V. et al.Discovery and refinement of genetic loci associated with cardiometabolic risk using dense imputation maps. Nat Genet 48, 1303-1312, doi:10.1038/ng.3668 (2016).
65. Huang, J. et al.Improved imputation of low-frequency and rare variants using the UK10K haplotype reference panel. Nat Commun 6, 8111, doi:10.1038/ncomms9111 (2015).
66. Vernon Smith, A. NHLBI TOPMed program : How to use WGS and other multi-omics data on over 140K genetically diverse and deeply phenotyped participants to advance your science : Genomic Variation in TOPMed. 70th Annual Meeting of the Amercian Society of Human Genetics (ASHG : NHLBI TOPMed program : ancillary session, October 26). October 27-30, Virtual meeting. Presentation : https://topmed.nhlbi.nih.gov/sites/default/files/Genomic%20Variation%20in%20TOPMed%20-%20IRC.pdf, https://www.abstractsonline.com/pp8/#!/9070/session/548. (2020).
67. Taliun, D. et al.Sequencing of 53,831 diverse genomes from the NHLBI TOPMed Program. Nature 590, 290-299, doi:10.1038/s41586-021-03205-y (2021).
68. Byrska-Bishop, M. et al.High-coverage whole-genome sequencing of the expanded 1000 Genomes Project cohort including 602 trios. Cell 185, 3426-3440.e3419, doi:10.1016/j.cell.2022.08.004 (2022).
69. Gudmundsson, S. et al.Variant interpretation using population databases: Lessons from gnomAD. Human Mutation 43, 1012-1030, doi:https://doi.org/10.1002/humu.24309 (2022).
70. Karczewski, K. J. et al.The mutational constraint spectrum quantified from variation in 141,456 humans. Nature 581, 434-443, doi:10.1038/s41586-020-2308-7 (2020).
71. Lek, M. et al.Analysis of protein-coding genetic variation in 60,706 humans. Nature 536, 285-291, doi:10.1038/nature19057 (2016).
72. Vergara, C. et al.Genotype imputation performance of three reference panels using African ancestry individuals. Human genetics 137, 281-292, doi:10.1007/s00439-018-1881-4 (2018).
73. Gurdasani, D. et al.The African Genome Variation Project shapes medical genetics in Africa. Nature 517, 327-332, doi:10.1038/nature13997 (2015).
74. Rotimi, C. et al.Research capacity. Enabling the genomic revolution in Africa. Science (New York, N.Y.) 344, 1346-1348, doi:10.1126/science.1251546 (2014).
75. Mathias, R. A. et al.A continuum of admixture in the Western Hemisphere revealed by the African Diaspora genome. Nat Commun 7, 12522, doi:10.1038/ncomms12522 (2016).
76. Schurz, H. et al.Evaluating the Accuracy of Imputation Methods in a Five-Way Admixed Population. Frontiers in genetics 10, 34, doi:10.3389/fgene.2019.00034 (2019).
77. Regan, E. A. et al.Genetic epidemiology of COPD (COPDGene) study design. Copd 7, 32-43, doi:10.3109/15412550903499522 (2010).
78. Browning, S. R. & Browning, B. L. Rapid and accurate haplotype phasing and missing-data inference for whole-genome association studies by use of localized haplotype clustering. American journal of human genetics 81, 1084-1097, doi:10.1086/521987 (2007).
79. Browning, S. R. & Browning, B. L. Haplotype phasing: existing methods and new developments. Nat Rev Genet 12, 703-714, doi:10.1038/nrg3054 (2011).
80. Browning, B. L. & Browning, S. R. A unified approach to genotype imputation and haplotype-phase inference for large data sets of trios and unrelated individuals. American journal of human genetics 84, 210-223, doi:10.1016/j.ajhg.2009.01.005 (2009).
81. Li, N. & Stephens, M. Modeling linkage disequilibrium and identifying recombination hotspots using single-nucleotide polymorphism data. Genetics 165, 2213-2233 (2003).
82. Howie, B. N., Donnelly, P. & Marchini, J. A flexible and accurate genotype imputation method for the next generation of genome-wide association studies. PLoS Genet 5, e1000529, doi:10.1371/journal.pgen.1000529 (2009).
83. Li, Y., Willer, C. J., Ding, J., Scheet, P. & Abecasis, G. R. MaCH: using sequence and genotype data to estimate haplotypes and unobserved genotypes. Genetic epidemiology 34, 816-834, doi:10.1002/gepi.20533 (2010).
84. Browning, B. L. & Browning, S. R. Genotype Imputation with Millions of Reference Samples. American journal of human genetics 98, 116-126, doi:10.1016/j.ajhg.2015.11.020 (2016).
85. Marchini, J. & Howie, B. Genotype imputation for genome-wide association studies. Nat Rev Genet 11, 499-511, doi:10.1038/nrg2796 (2010).
86. Delaneau, O., Zagury, J. F. & Marchini, J. Improved whole-chromosome phasing for disease and population genetic studies. Nat Methods 10, 5-6, doi:10.1038/nmeth.2307 (2013).
87. Delaneau, O., Zagury, J. F., Robinson, M. R., Marchini, J. L. & Dermitzakis, E. T. Accurate, scalable and integrative haplotype estimation. Nat Commun 10, 5436, doi:10.1038/s41467-019-13225-y (2019).
88. Rubinacci, S., Delaneau, O. & Marchini, J. Genotype imputation using the Positional Burrows Wheeler Transform. PLoS Genet 16, e1009049, doi:10.1371/journal.pgen.1009049 (2020).
89. Durbin, R. Efficient haplotype matching and storage using the positional Burrows-Wheeler transform (PBWT). Bioinformatics (Oxford, England) 30, 1266-1272, doi:10.1093/bioinformatics/btu014 (2014).
90. Spiliopoulou, A., Colombo, M., Orchard, P., Agakov, F. & McKeigue, P. GeneImp: Fast Imputation to Large Reference Panels Using Genotype Likelihoods from Ultralow Coverage Sequencing. Genetics 206, 91-104, doi:10.1534/genetics.117.200063 (2017).
91. Rubinacci, S., Ribeiro, D. M., Hofmeister, R. J. & Delaneau, O. Efficient phasing and imputation of low-coverage sequencing data using large reference panels. Nat Genet 53, 120-126, doi:10.1038/s41588-020-00756-0 (2021).
92. Wasik, K. et al.Comparing low-pass sequencing and genotyping for trait mapping in pharmacogenetics. BMC Genomics 22, 197, doi:10.1186/s12864-021-07508-2 (2021).
93. Davies, R. W. et al.Rapid genotype imputation from sequence with reference panels. Nat Genet 53, 1104-1111, doi:10.1038/s41588-021-00877-0 (2021).
94. Davies, R. W., Flint, J., Myers, S. & Mott, R. Rapid genotype imputation from sequence without reference panels. Nature Genetics 48, 965-969, doi:10.1038/ng.3594 (2016).
95. Charon, C., Allodji, R., Meyer, V. & Deleuze, J. F. Impact of pre- and post-variant filtration strategies on imputation. Scientific reports 11, 6214, doi:10.1038/s41598-021-85333-z (2021).
96. Coleman, J. R. et al.Quality control, imputation and analysis of genome-wide genotyping data from the Illumina HumanCoreExome microarray. Brief Funct Genomics 15, 298-304, doi:10.1093/bfgp/elv037 (2016).
97. Sanchez, M. P. et al.Short communication: Confirmation of candidate causative variants on milk composition and cheesemaking properties in Montbeliarde cows. J Dairy Sci 101, 10076-10081, doi:10.3168/jds.2018-14986 (2018).
98. Mancin, E., Sosa-Madrid, B. S., Blasco, A. & Ibáñez-Escriche, N. Genotype Imputation to Improve the Cost-Efficiency of Genomic Selection in Rabbits. Animals 11, 803 (2021).
99. Keeble-Gagnère, G. et al.Novel Design of Imputation-Enabled SNP Arrays for Breeding and Research Applications Supporting Multi-Species Hybridization. Frontiers in Plant Science 12, doi:10.3389/fpls.2021.756877 (2021).
100. Kim, M., Kim, J. H., Kim, K. & Kim, S. Cost-effective and accurate method of measuring fetal fraction using SNP imputation. Bioinformatics (Oxford, England) 34, 1086-1091, doi:10.1093/bioinformatics/btx728 (2018).
101. Das, S., Abecasis, G. R. & Browning, B. L. Genotype Imputation from Large Reference Panels. Annu Rev Genomics Hum Genet 19, 73-96, doi:10.1146/annurev-genom-083117-021602 (2018).
102. Browning, B. L., Zhou, Y. & Browning, S. R. A One-Penny Imputed Genome from Next-Generation Reference Panels. The American Journal of Human Genetics 103, 338-348, doi:https://doi.org/10.1016/j.ajhg.2018.07.015 (2018).
103. Tachmazidou, I. et al.Whole-Genome Sequencing Coupled to Imputation Discovers Genetic Signals for Anthropometric Traits. American journal of human genetics 100, 865-884, doi:10.1016/j.ajhg.2017.04.014 (2017).
104. Lou, R. N., Jacobs, A., Wilder, A. P. & Therkildsen, N. O. A beginner's guide to low-coverage whole genome sequencing for population genomics. Mol Ecol 30, 5966-5993, doi:10.1111/mec.16077 (2021).
105. Li, J. H., Mazur, C. A., Berisa, T. & Pickrell, J. K. Low-pass sequencing increases the power of GWAS and decreases measurement error of polygenic risk scores compared to genotyping arrays. Genome research 31, 529-537, doi:10.1101/gr.266486.120 (2021).
106. Chaubey, A. et al.Low-Pass Genome Sequencing: Validation and Diagnostic Utility from 409 Clinical Cases of Low-Pass Genome Sequencing for the Detection of Copy Number Variants to Replace Constitutional Microarray. J Mol Diagn 22, 823-840, doi:10.1016/j.jmoldx.2020.03.008 (2020).
107. DePristo, M. A. et al.A framework for variation discovery and genotyping using next-generation DNA sequencing data. Nature Genetics 43, 491-498, doi:10.1038/ng.806 (2011).
108. Zheng, C., Boer, M. P. & van Eeuwijk, F. A. Accurate Genotype Imputation in Multiparental Populations from Low-Coverage Sequence. Genetics 210, 71-82, doi:10.1534/genetics.118.300885 (2018).
109. R : A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL - Bioconductor 3.2. R.version 3.2.4 in Rstudio 0.99.115 - 2016-03-10 (2016).
110. Purcell, S. et al.PLINK: a tool set for whole-genome association and population-based linkage analyses. American journal of human genetics 81, 559-575, doi:10.1086/519795 (2007).
111. Purcell, S. PLINK: Whole genome data analysis toolset (v 1.07). https://zzz.bwh.harvard.edu/plink/download.shtml (2015).
112. Delaneau, O., Marchini, J. & Zagury, J.-F. A linear complexity phasing method for thousands of genomes. Nature Methods 9, 179-181, doi:10.1038/nmeth.1785 (2012).
113. O'Connell, J. et al.Haplotype estimation for biobank-scale data sets. Nat Genet 48, 817-820, doi:10.1038/ng.3583 (2016).
114. Patterson, M. et al.WhatsHap: Weighted Haplotype Assembly for Future-Generation Sequencing Reads. Journal of computational biology : a journal of computational molecular cell biology 22, 498-509, doi:10.1089/cmb.2014.0157 (2015).
115. Howie, B., Marchini, J. & Stephens, M. Genotype imputation with thousands of genomes. G3 (Bethesda, Md.) 1, 457-470, doi:10.1534/g3.111.001198 (2011).
116. Wellcome Trust Case Control, C. Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls. Nature 447, 661-678, doi:10.1038/nature05911 (2007).
117. Charon, C., Allodji, R. & Deleuze, J. F. Effects of filtrations on imputation in clusterised variants. 67th Annual Meeting of the Amercian Society of Human Genetics (ASHG : Program : Bioinformatics and Computational Approaches, October 18). October 17-21. Orlando, Florida, USA. Poster abstract 1444W : https://www.ashg.org/wp-content/uploads/2019/10/2017-Poster-Abstracts.pdf. , Page 537 (2017).
118. Guo, Y. et al.Illumina human exome genotyping array clustering and quality control. Nature Protocols 9, 2643-2662, doi:10.1038/nprot.2014.174 (2014).
119. Cavalli-Sforza, L. L. The Human Genome Diversity Project: past, present and future. Nature Reviews Genetics 6, 333-340, doi:10.1038/nrg1596 (2005).
120. Beck, T. F., Mullikin, J. C. & Biesecker, L. G. Systematic Evaluation of Sanger Validation of Next-Generation Sequencing Variants. Clinical chemistry 62, 647-654, doi:10.1373/clinchem.2015.249623 (2016).
121. Mu, W., Lu, H. M., Chen, J., Li, S. & Elliott, A. M. Sanger Confirmation Is Required to Achieve Optimal Sensitivity and Specificity in Next-Generation Sequencing Panel Testing. J Mol Diagn 18, 923-932, doi:10.1016/j.jmoldx.2016.07.006 (2016).
122. Price, A. L. et al.Principal components analysis corrects for stratification in genome-wide association studies. Nat Genet 38, 904-909, doi:10.1038/ng1847 (2006).
123. Huang, G. H. & Tseng, Y. C. Genotype imputation accuracy with different reference panels in admixed populations. BMC Proc 8, S64, doi:10.1186/1753-6561-8-S1-S64 (2014).
124. Mathieson, I. & McVean, G. Demography and the age of rare variants. PLoS Genet 10, e1004528, doi:10.1371/journal.pgen.1004528 (2014).
125. Goldstein, J. I. et al.zCall: a rare variant caller for array-based genotyping: genetics and population analysis. Bioinformatics (Oxford, England) 28, 2543-2545, doi:10.1093/bioinformatics/bts479 (2012).
126. Koboldt, D. C. Best practices for variant calling in clinical sequencing. Genome Med 12, 91, doi:10.1186/s13073-020-00791-w (2020).
127. Heather, J. M. & Chain, B. The sequence of sequencers: The history of sequencing DNA. Genomics 107, 1-8, doi:10.1016/j.ygeno.2015.11.003 (2016).
128. Charon, C., Allodji, R., Deleuze, J. F. & Meyer, V. Evaluation de strategies de filtration de variants genetiques lors d'analyses d'imputation effectueées dans la recherche de facteurs de susceptibilite aux pathologies humaines. Scoop.it. Life Sciencdes Universite Paris-Saclay. 4th April 2020. (http://sco.lt/7avC08 : https://www.scoop.it/topic/life-sci-news-upsaclay/p/4124072256/2021/04/04/evaluation-de-strategies-de-filtration-de-variants-genetiques-lors-d-analyses-d-imputation-effectuees-dans-la-recherche-de-facteurs-de-susceptibilite-aux-pathologies-humaines) (2021).