1. Imada, Y., Oyama, N., Shinoda, K., Takahashi, H. & Yukawa, H. Oldest leaf mine trace fossil from East Asia provides insight into ancient nutritional flow in a plant–herbivore interaction. Sci Rep 12, 5254 (2022).
2. da COSTA-LIMA, T. C., SILVA, A. de C. & Parra, J. R. P. Moscas-minadoras do gênero Liriomyza (Diptera: Agromyzidae): aspectos taxonômicos e biologia. Embrapa Semiárido-Documentos (INFOTECA-E) (2015).
3. Health (PLH), E. P. on P. et al. Pest categorisation of Liriomyza bryoniae. EFSA Journal 18, e06038 (2020).
4. Ferreira, J. M. S. & Morin, J. P. Aspéctos da biologia e comportamento do minador da folha do coqueiro, Taphrocerus cocois Bondar, 1922 (Coleoptera : Buprestidae) e ocorrência de parasitismo. Anais da Sociedade Entomológica do Brasil 3 (1985).
5. Motta, I. O. et al. The coffee leaf miner, Leucoptera coffeella (Lepidoptera: Lyonetiidae): identification of the larval instars and description of male and female genitalia. Revista Brasileira de Entomologia 65, (2021).
6. Guérin-Méneville, F.-É. & Perrottet, S. Mémoire sur un insecte et un champignon qui ravagent les cafiers aux Antilles. (Bouchard-Huzard, 1842).
7. Costa, J. N. M., Teixeira, C. A. D., Júnior, J. R. V., Rocha, R. B. & Fernandes, C. de F. Informações para facilitar a identificação das diferentes fases do bicho-mineiro (Leucoptera coffeella) em campo. Embrapa Rondônia-Comunicado Técnico INFOTECA-E, Rondônia (2012).
8. Dantas, J. et al. A Comprehensive Review of the Coffee Leaf Miner Leucoptera coffeella (Lepidoptera: Lyonetiidae)—A Major Pest for the Coffee Crop in Brazil and Others Neotropical Countries. Insects 12, 1130 (2021).
9. Derocles, S. A. P., Evans, D. M., Nichols, P. C., Evans, S. A. & Lunt, D. H. Determining Plant – Leaf Miner – Parasitoid Interactions: A DNA Barcoding Approach. PLOS ONE 10, e0117872 (2015).
10. Childers, A. K. et al. The USDA-ARS Ag100Pest Initiative: High-Quality Genome Assemblies for Agricultural Pest Arthropod Research. Insects 12, 626 (2021).
11. Souza, J. C. de, Reis, P. R., Rigitano, R. L. de O. & Ciociola Júnior, A. I. Eficiência de thiamethoxam no controle do bicho-mineiro do cafeeiro. II - Influência na época de aplicação via irrigação por gotejamento. (2006).
12. Neves, M. F. Análise Dos Benefícios Econômicos e Sociais Da Utilização Do Carbofurano No Controle de Nematoides, Bicho Mineiro (Leucoptera coffeella) e Cigarra Do Cafeeiro (Quesada Gigas e Fidicina Pronoe) Na Cultura Do Café. Univ. Sao Paulo 29, 1–29 (2016).
13. Concafe. Produção dos Cafés do Brasil atinge 61,62 milhões de sacas de 60kg em 2020, volume 25% maior que 2019. http://www.consorciopesquisacafe.com.br/index.php/imprensa/noticias/1023-2020-09-29-15-22-05 (2020).
14. USDA, U. S. D. of A. Coffee: World Markets and Trade. (2021).
15. Leite, S. A. et al. Profile of Coffee Crops and Management of the Neotropical Coffee Leaf Miner, Leucoptera coffeella. Sustainability 12, 8011 (2020).
16. Leite, S. A. et al. Time-concentration interplay in insecticide resistance among populations of the Neotropical coffee leaf miner, Leucoptera coffeella. Agricultural and Forest Entomology 23, 232–241 (2021).
17. Sawinska, Z., Świtek, S., Głowicka-Wołoszyn, R. & Kowalczewski, P. Ł. Agricultural Practice in Poland Before and After Mandatory IPM Implementation by the European Union. Sustainability 12, 1107 (2020).
18. Oppert, B., Stoss, S., Monk, A. & Smith, T. Optimized Extraction of Insect Genomic DNA for Long-Read Sequencing. Methods and Protocols 2, 89 (2019).
19. Wouters, R., Mugford, S., Biello, R., Heavens, D. & Hogenhout, S. Extraction of high molecular weight DNA from aphids and other sap-feeding insects for long-read sequencing. protocols.io https://www.protocols.io/view/extraction-of-high-molecular-weight-dna-from-aphid-bhftj3nn (2020).
20. Kingan, S. B. et al. A High-Quality De novo Genome Assembly from a Single Mosquito Using PacBio Sequencing. Genes 10, 62 (2019).
21. Pippel, M. et al. A highly contiguous genome assembly of the bat hawkmoth Hyles vespertilio (Lepidoptera: Sphingidae). GigaScience 9, (2020).
22. Houseley, J. & Tollervey, D. The Many Pathways of RNA Degradation. Cell 136, 763–776 (2009).
23. Florell, S. R. et al. Preservation of RNA for Functional Genomic Studies: A Multidisciplinary Tumor Bank Protocol. Mod Pathol 14, 116–128 (2001).
24. Schroeder, A. et al. The RIN: an RNA integrity number for assigning integrity values to RNA measurements. BMC molecular biology 7, 1–14 (2006).
25. McCarthy, S. D., Dugon, M. M. & Power, A. M. ‘Degraded’RNA profiles in Arthropoda and beyond. PeerJ 3, e1436 (2015).
26. Ishikawa, H. t & Newburgh, R. W. Studies of the thermal conversion of 28 S RNA of Galleria mellonella (L.) to an 18 S product. Journal of Molecular Biology 64, 135–144 (1972).
27. Fujiwara, H. & Ishikawa, H. Molecular mechanism of introduction of the hidden break into the 28S rRNA of insects: implication based on structural studies. Nucleic acids research 14, 6393–6401 (1986).
28. Winnebeck, E. C., Millar, C. D. & Warman, G. R. Why does insect RNA look degraded? Journal of Insect Science 10, 159 (2010).
29. DeLeo, D. M., Pérez-Moreno, J. L., Vázquez-Miranda, H. & Bracken-Grissom, H. D. RNA profile diversity across arthropoda: guidelines, methodological artifacts, and expected outcomes. Biology Methods and Protocols 3, bpy012 (2018).
30. Mueller, O., Lightfoot, S. & Schroeder, A. RNA integrity number (RIN)–standardization of RNA quality control. Agilent application note, publication 1, 1–8 (2004).
31. Melen, G. J., Pesce, C. G., Rossi, M. S. & Kornblihtt, A. R. Novel processing in a mammalian nuclear 28S pre‐rRNA: tissue‐specific elimination of an ‘intron’bearing a hidden break site. The EMBO Journal 18, 3107–3118 (1999).
32. Sambrook, J. & Russell, D. W. Molecular cloning: A laboratory manual. Mol. Cloning A Lab. Man (2001).
33. Ogino, K., Eda-Fujiwara, H., Fujiwara, H. & Ishikawa, H. What causes the aphid 28S rRNA to lack the hidden break? Journal of molecular evolution 30, 509–513 (1990).