1 Alseekh, S. et al. Mass spectrometry-based metabolomics: a guide for annotation, quantification and best reporting practices. Nat Methods 18, 747-756, doi:10.1038/s41592-021-01197-1 (2021).
2 Alseekh, S. & Fernie, A. R. Metabolomics 20 years on: what have we learned and what hurdles remain? Plant J 94, 933-942, doi:10.1111/tpj.13950 (2018).
3 Doerr, A. Global metabolomics. Nature Methods 14, 32-32, doi:10.1038/nmeth.4112 (2017).
4 Cajka, T. & Fiehn, O. Toward Merging Untargeted and Targeted Methods in Mass Spectrometry-Based Metabolomics and Lipidomics. Anal Chem 88, 524-545, doi:10.1021/acs.analchem.5b04491 (2016).
5 Vermeulen, R., Schymanski, E. L., Barabasi, A. L. & Miller, G. W. The exposome and health: Where chemistry meets biology. Science 367, 392-396, doi:10.1126/science.aay3164 (2020).
6 Beger, R. D. et al. Metabolomics enables precision medicine: "A White Paper, Community Perspective". Metabolomics 12, 149, doi:10.1007/s11306-016-1094-6 (2016).
7 Want, E. J. et al. Global metabolic profiling of animal and human tissues via UPLC-MS. Nat Protoc 8, 17-32, doi:10.1038/nprot.2012.135 (2013).
8 Zhou, G. et al. NetworkAnalyst 3.0: a visual analytics platform for comprehensive gene expression profiling and meta-analysis. Nucleic Acids Res 47, W234-W241, doi:10.1093/nar/gkz240 (2019).
9 Chong, J., Liu, P., Zhou, G. & Xia, J. Using MicrobiomeAnalyst for comprehensive statistical, functional, and meta-analysis of microbiome data. Nat Protoc 15, 799-821, doi:10.1038/s41596-019-0264-1 (2020).
10 Pang, Z. et al. MetaboAnalyst 5.0: narrowing the gap between raw spectra and functional insights. Nucleic Acids Research 49, W388-W396, doi:10.1093/nar/gkab382 (2021).
11 Xia, J., Psychogios, N., Young, N. & Wishart, D. S. MetaboAnalyst: a web server for metabolomic data analysis and interpretation. Nucleic Acids Res 37, W652-660, doi:10.1093/nar/gkp356 (2009).
12 Xia, J., Mandal, R., Sinelnikov, I. V., Broadhurst, D. & Wishart, D. S. MetaboAnalyst 2.0--a comprehensive server for metabolomic data analysis. Nucleic Acids Res 40, W127-133, doi:10.1093/nar/gks374 (2012).
13 Xia, J., Sinelnikov, I. V., Han, B. & Wishart, D. S. MetaboAnalyst 3.0--making metabolomics more meaningful. Nucleic Acids Res 43, W251-257, doi:10.1093/nar/gkv380 (2015).
14 Chong, J. et al. MetaboAnalyst 4.0: towards more transparent and integrative metabolomics analysis. Nucleic Acids Res 46, W486-W494, doi:10.1093/nar/gky310 (2018).
15 Stanstrup, J. et al. The metaRbolomics Toolbox in Bioconductor and beyond. Metabolites 9, doi:10.3390/metabo9100200 (2019).
16 Gardinassi, L. G., Xia, J., Safo, S. E. & Li, S. Bioinformatics Tools for the Interpretation of Metabolomics Data. Current Pharmacology Reports 3, 374-383, doi:10.1007/s40495-017-0107-0 (2017).
17 Tautenhahn, R., Patti, G. J., Rinehart, D. & Siuzdak, G. XCMS Online: a web-based platform to process untargeted metabolomic data. Anal Chem 84, 5035-5039, doi:10.1021/ac300698c (2012).
18 Giacomoni, F. et al. Workflow4Metabolomics: a collaborative research infrastructure for computational metabolomics. Bioinformatics 31, 1493-1495, doi:10.1093/bioinformatics/btu813 (2015).
19 Yang, Q. et al. NOREVA: enhanced normalization and evaluation of time-course and multi-class metabolomic data. Nucleic Acids Res 48, W436-W448, doi:10.1093/nar/gkaa258 (2020).
20 Chambers, M. C. et al. A cross-platform toolkit for mass spectrometry and proteomics. Nat Biotechnol 30, 918-920, doi:10.1038/nbt.2377 (2012).
21 Pluskal, T., Castillo, S., Villar-Briones, A. & Oresic, M. MZmine 2: modular framework for processing, visualizing, and analyzing mass spectrometry-based molecular profile data. BMC Bioinformatics 11, 395, doi:10.1186/1471-2105-11-395 (2010).
22 Du, X. X., Smirnov, A., Pluskal, T., Jia, W. & Sumner, S. Metabolomics Data Preprocessing Using ADAP and MZmine 2. Computational Methods and Data Analysis for Metabolomics 2104, 25-48, doi:Book_Doi 10.1007/978-1-0716-0239-3 (2020).
23 Tsugawa, H. et al. A lipidome atlas in MS-DIAL 4. Nat Biotechnol 38, 1159-1163, doi:10.1038/s41587-020-0531-2 (2020).
24 Tsugawa, H. et al. Hydrogen Rearrangement Rules: Computational MS/MS Fragmentation and Structure Elucidation Using MS-FINDER Software. Anal Chem 88, 7946-7958, doi:10.1021/acs.analchem.6b00770 (2016).
25 Rost, H. L. et al. OpenMS: a flexible open-source software platform for mass spectrometry data analysis. Nat Methods 13, 741-748, doi:10.1038/nmeth.3959 (2016).
26 Kenar, E. et al. Automated label-free quantification of metabolites from liquid chromatography-mass spectrometry data. Mol Cell Proteomics 13, 348-359, doi:10.1074/mcp.M113.031278 (2014).
27 Ritchie, M. E. et al. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res 43, e47, doi:10.1093/nar/gkv007 (2015).
28 Xia, J. & Wishart, D. S. Web-based inference of biological patterns, functions and pathways from metabolomic data using MetaboAnalyst. Nat Protoc 6, 743-760, doi:10.1038/nprot.2011.319 (2011).
29 Xia, J. & Wishart, D. S. Metabolomic data processing, analysis, and interpretation using MetaboAnalyst. Curr Protoc Bioinformatics Chapter 14, Unit 14 10, doi:10.1002/0471250953.bi1410s34 (2011).
30 Xia, J. & Wishart, D. S. Using MetaboAnalyst 3.0 for Comprehensive Metabolomics Data Analysis. Curr Protoc Bioinformatics 55, 14 10 11-14 10 91, doi:10.1002/cpbi.11 (2016).
31 Xia, J., Broadhurst, D. I., Wilson, M. & Wishart, D. S. Translational biomarker discovery in clinical metabolomics: an introductory tutorial. Metabolomics 9, 280-299, doi:10.1007/s11306-012-0482-9 (2013).
32 Chong, J., Wishart, D. S. & Xia, J. Using MetaboAnalyst 4.0 for Comprehensive and Integrative Metabolomics Data Analysis. Curr Protoc Bioinformatics 68, e86, doi:10.1002/cpbi.86 (2019).
33 Chong, J. & Xia, J. Using MetaboAnalyst 4.0 for Metabolomics Data Analysis, Interpretation, and Integration with Other Omics Data. Methods Mol Biol 2104, 337-360, doi:10.1007/978-1-0716-0239-3_17 (2020).
34 Tautenhahn, R., Bottcher, C. & Neumann, S. Highly sensitive feature detection for high resolution LC/MS. BMC Bioinformatics 9, 504, doi:10.1186/1471-2105-9-504 (2008).
35 Yu, T., Park, Y., Johnson, J. M. & Jones, D. P. apLCMS--adaptive processing of high-resolution LC/MS data. Bioinformatics 25, 1930-1936, doi:10.1093/bioinformatics/btp291 (2009).
36 Alboniga, O. E., Gonzalez, O., Alonso, R. M., Xu, Y. & Goodacre, R. Optimization of XCMS parameters for LC-MS metabolomics: an assessment of automated versus manual tuning and its effect on the final results. Metabolomics 16, 14, doi:10.1007/s11306-020-1636-9 (2020).
37 Pang, Z., Chong, J., Li, S. & Xia, J. MetaboAnalystR 3.0: Toward an Optimized Workflow for Global Metabolomics. Metabolites 10, doi:10.3390/metabo10050186 (2020).
38 Sindelar, M. & Patti, G. J. Chemical Discovery in the Era of Metabolomics. J Am Chem Soc 142, 9097-9105, doi:10.1021/jacs.9b13198 (2020).
39 Senan, O. et al. CliqueMS: a computational tool for annotating in-source metabolite ions from LC-MS untargeted metabolomics data based on a coelution similarity network. Bioinformatics 35, 4089-4097, doi:10.1093/bioinformatics/btz207 (2019).
40 Kuhl, C., Tautenhahn, R., Bottcher, C., Larson, T. R. & Neumann, S. CAMERA: an integrated strategy for compound spectra extraction and annotation of liquid chromatography/mass spectrometry data sets. Anal Chem 84, 283-289, doi:10.1021/ac202450g (2012).
41 Kind, T. & Fiehn, O. Seven Golden Rules for heuristic filtering of molecular formulas obtained by accurate mass spectrometry. Bmc Bioinformatics 8, doi:10.1186/1471-2105-8-105 (2007).
42 Subramanian, A. et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci U S A 102, 15545-15550, doi:10.1073/pnas.0506580102 (2005).
43 Xia, J. & Wishart, D. S. MSEA: a web-based tool to identify biologically meaningful patterns in quantitative metabolomic data. Nucleic Acids Res 38, W71-77, doi:10.1093/nar/gkq329 (2010).
44 Xia, J. & Wishart, D. S. MetPA: a web-based metabolomics tool for pathway analysis and visualization. Bioinformatics 26, 2342-2344, doi:10.1093/bioinformatics/btq418 (2010).
45 Li, S. et al. Predicting network activity from high throughput metabolomics. PLoS Comput Biol 9, e1003123, doi:10.1371/journal.pcbi.1003123 (2013).
46 Xia, J. et al. INMEX--a web-based tool for integrative meta-analysis of expression data. Nucleic Acids Res 41, W63-70, doi:10.1093/nar/gkt338 (2013).
47 Zhou, G. & Xia, J. OmicsNet: a web-based tool for creation and visual analysis of biological networks in 3D space. Nucleic Acids Res 46, W514-W522, doi:10.1093/nar/gky510 (2018).
48 Schriml, L. M. et al. COVID-19 pandemic reveals the peril of ignoring metadata standards. Sci Data 7, 188, doi:10.1038/s41597-020-0524-5 (2020).
49 Nygaard, V., Rodland, E. A. & Hovig, E. Methods that remove batch effects while retaining group differences may lead to exaggerated confidence in downstream analyses. Biostatistics 17, 29-39, doi:10.1093/biostatistics/kxv027 (2016).
50 Kahan, B. C., Jairath, V., Dore, C. J. & Morris, T. P. The risks and rewards of covariate adjustment in randomized trials: an assessment of 12 outcomes from 8 studies. Trials 15, 139, doi:10.1186/1745-6215-15-139 (2014).
51 Chong, J. & Xia, J. MetaboAnalystR: an R package for flexible and reproducible analysis of metabolomics data. Bioinformatics 34, 4313-4314, doi:10.1093/bioinformatics/bty528 (2018).
52 Chong, J., Yamamoto, M. & Xia, J. MetaboAnalystR 2.0: From Raw Spectra to Biological Insights. Metabolites 9, doi:10.3390/metabo9030057 (2019).
53 Gardinassi, L. G. et al. Integrative metabolomics and transcriptomics signatures of clinical tolerance to Plasmodium vivax reveal activation of innate cell immunity and T cell signaling. Redox Biol 17, 158-170, doi:10.1016/j.redox.2018.04.011 (2018).
54 Pang, Z., Zhou, G., Chong, J. & Xia, J. Comprehensive Meta-Analysis of COVID-19 Global Metabolomics Datasets. Metabolites 11, doi:10.3390/metabo11010044 (2021).
55 Walker, D. I. et al. High-resolution metabolomics of occupational exposure to trichloroethylene. Int J Epidemiol 45, 1517-1527, doi:10.1093/ije/dyw218 (2016).
56 Conley, C. J. et al. Massifquant: open-source Kalman filter-based XC-MS isotope trace feature detection. Bioinformatics 30, 2636-2643, doi:10.1093/bioinformatics/btu359 (2014).
57 Vaughan, A. M. et al. Type II fatty acid synthesis is essential only for malaria parasite late liver stage development. Cell Microbiol 11, 506-520, doi:10.1111/j.1462-5822.2008.01270.x (2009).
58 Shears, M. J., Botte, C. Y. & McFadden, G. I. Fatty acid metabolism in the Plasmodium apicoplast: Drugs, doubts and knockouts. Mol Biochem Parasitol 199, 34-50, doi:10.1016/j.molbiopara.2015.03.004 (2015).
59 Cumnock, K. et al. Host Energy Source Is Important for Disease Tolerance to Malaria. Curr Biol 28, 1635-1642 e1633, doi:10.1016/j.cub.2018.04.009 (2018).
60 Libiseller, G. et al. IPO: a tool for automated optimization of XCMS parameters. BMC Bioinformatics 16, 118, doi:10.1186/s12859-015-0562-8 (2015).
61 McLean, C. & Kujawinski, E. B. AutoTuner: High Fidelity and Robust Parameter Selection for Metabolomics Data Processing. Anal Chem 92, 5724-5732, doi:10.1021/acs.analchem.9b04804 (2020).
62 Zhou, G., Ewald, J. & Xia, J. OmicsAnalyst: a comprehensive web-based platform for visual analytics of multi-omics data. Nucleic Acids Res 49, W476-W482, doi:10.1093/nar/gkab394 (2021).
63 Rappoport, N. & Shamir, R. Multi-omic and multi-view clustering algorithms: review and cancer benchmark. Nucleic Acids Res 47, 1044, doi:10.1093/nar/gky1226 (2019).
64 Smith, C. A., Want, E. J., O'Maille, G., Abagyan, R. & Siuzdak, G. XCMS: processing mass spectrometry data for metabolite profiling using nonlinear peak alignment, matching, and identification. Anal Chem 78, 779-787, doi:10.1021/ac051437y (2006).
65 Prince, J. T. & Marcotte, E. M. Chromatographic alignment of ESI-LC-MS proteomics data sets by ordered bijective interpolated warping. Anal Chem 78, 6140-6152, doi:10.1021/ac0605344 (2006).