[1] Weise K, Numssen O, Thielscher A, Hartwigsen G, Knösche TR. A novel approach to localize cortical TMS effects. Neuroimage 209, 116486 (2020). (doi: 10.1016/j.neuroimage.2019.116486)
[2] Numssen O, Zier AL, Thielscher A, Hartwigsen G, Knösche T, Weise K. Efficient high-resolution TMS mapping of the human motor cortex by nonlinear regression. Neuroimage 245, 118654 (2021). (doi: 10.1016/j.neuroimage.2021.118654)
[3] Goetz SM, Mahdi Alavi SM, Deng Z-D, Peterchev AV. Statistical Model of Motor-Evoked Potentials. IEEE Transactions on Neural Systems and Rehabilitation Engineering 27, 1539-1545 (2019). (doi: 10.1109/tnsre.2019.2926543)
[4] Di Lazzaro V, Oliviero A, Profice P, Saturno E, Pilato F, Insola A, Mazzone P, Tonali P, Rothwell J. Comparison of descending volleys evoked by transcranial magnetic and electric stimulation in conscious humans. Electroencephalography and Clinical Neurophysiology/Electromyography and Motor Control 109(5), 397–401 (1998). (doi: 10.1016/S0924-980X(98)00038-1)
[5] Thielscher A, Wichmann, FA. Determining the cortical target of transcranial magnetic stimulation. Neuroimage 47(4), 1319-1330 (2009). (doi: 10.1016/j.neuroimage.2009.04.021)
[6] Aberra AS, Wang B, Grill WM, Peterchev AV. Simulation of transcranial magnetic stimulation in head model with morphologically-realistic cortical neurons. Brain Stimulation 13, 175-189 (2020). (doi: 10.1016/j.brs.2019.10.002)
[7] Siebner HR. Does TMS of the precentral motor hand knob primarily stimulate the dorsal premotor cortex or the primary motor hand area? Brain Stimulation 13, 517-518 (2020). (doi: 10.1016/j.brs.2019.12.015)
[8] Devanne H, Lavoie BA, Capaday C. Input-output properties and gain changes in the human corticospinal pathway. Experimental brain research, 114(2), 329-338 (1997). (doi: 10.1007/pl00005641)
[9] Capaday C. Neurophysiological methods for studies of the motor system in freely moving human subjects. Journal of neuroscience methods, 74(2), 201-218 (1997). (doi: 10.1016/s0165-0270(97)02250-4)
[10] Ridding MC, Rothwell JC. Stimulus/response curves as a method of measuring motor cortical excitability in man. Electroencephalography and Clinical Neurophysiology/Electromyography and Motor Control, 105(5), 340-344 (1997). (doi: 10.1016/S0924-980X(97)00041-6)
[11] Rösler J, Niraula B, Strack V, Zdunczyk A, Schilt S, Savolainen P, Lioumis P, Mäkelä J, Vajkoczy P, Frey D, Picht T. Language mapping in healthy volunteers and brain tumor patients with a novel navigated TMS system: evidence of tumor-induced plasticity. Clinical Neurophysiology, 125(3), 526-536 (2014). (doi: 10.1016/j.clinph.2013.08.015)
[12] Shamov T, Spiriev T, Tzvetanov P, Petkov A. The combination of neuronavigation with transcranial magnetic stimulation for treatment of opercular gliomas of the dominant brain hemisphere. Clinical neurology and neurosurgery, 112(8), 672-677 (2010). (doi: 10.1016/j.clineuro.2010.05.005)
[13] Pelletier I, Sauerwein HC, Lepore F, Saint-Amour D, Lassonde M. Non-invasive alternatives to the Wada test in the presurgical evaluation of language and memory functions in epilepsy patients. Epileptic disorders, 9(2), 111-126 (2007). (doi: 10.1684/epd.2007.0109)
[14] Thielscher A, Reichenbach A, Uğurbil K, Uludağ K. The cortical site of visual suppression by transcranial magnetic stimulation. Cerebral cortex, 20(2), 328-338 (2010). (doi: 10.1093/cercor/bhp102)
[15] Rushworth MF, Ellison A, Walsh V. Complementary localization and lateralization of orienting and motor attention. Nature Neuroscience, 4(6), 656-661 (2001). (doi: 10.1038/88492)
[16] Rosanova M, Casali A, Bellina V, Resta F, Mariotti M, Massimini M. Natural frequencies of human corticothalamic circuits. Journal of Neuroscience, 29(24), 7679-7685 (2009). (doi: 10.1523/JNEUROSCI.0445-09.2009)
[17] Chung SW, Rogasch NC, Hoy KE, Sullivan CM, Cash RF, Fitzgerald PB. Impact of different intensities of intermittent theta burst stimulation on the cortical properties during TMS‐EEG and working memory performance. Human Brain Mapping, 39(2), 783-802 (2018). (doi: 10.1002/hbm.23882)
[18] Neggers SFW, Langerak TR, Schutter DJLG, Mandl RCW, Ramsey NF, Lemmens PJJ, Postma A. A stereotactic method for image-guided transcranial magnetic stimulation validated with fMRI and motor-evoked potentials. Neuroimage 21(4), 1805-1817 (2004). (doi: 10.1016/j.neuroimage.2003.12.006)
[19] Kleim JA, Kleim ED, Cramer SC. Systematic assessment of training-induced changes in corticospinal output to hand using frameless stereotaxic transcranial magnetic stimulation. Nature Protocols 2(7), 1675 (2007). (doi: 10.1038/nprot.2007.206)
[20] Sparing R, Buelte D, Meister IG, Pauš T, Fink GR. Transcranial magnetic stimulation and the challenge of coil placement: a comparison of conventional and stereotaxic neuronavigational strategies. Human Brain Mapping, 29(1), 82-96 (2008). (doi: 10.1002/hbm.20360)
[21] Ngomo S, Leonard G, Moffet H, Mercier C. Comparison of transcranial magnetic stimulation measures obtained at rest and under active conditions and their reliability. Journal of neuroscience methods, 205(1), 65-71 (2012). (doi: 10.1016/j.jneumeth.2011.12.012)
[22] van de Ruit M, Perenboom MJ, Grey MJ. TMS brain mapping in less than two minutes. Brain Stimulation 8(2), 231-239 (2015). (doi: 10.1016/j.brs.2014.10.020)
[23] Wassermann EM, Wang B, Zeffiro TA, Sadato N, Pascual-Leone A, Toro C, Hallett, M. Locating the motor cortex on the MRI with transcranial magnetic stimulation and PET. Neuroimage 3(1), 1-9 (1996). (doi: 10.1006/nimg.1996.0001)
[24] Classen J, Knorr U, Werhahn KJ, Schlaug G, Kunesch E, Cohen LG, Seitz RJ, Benecke R. Multimodal output mapping of human central motor representation on different spatial scales. The Journal of Physiology 512(1), 163-179 (1998). (doi: 10.1111/j.1469-7793.1998.163bf.x)
[25] Krieg S, Tarapore PE, Picht T, Tanigawa N, Houde J, Sollmann N, Meyer B, Vajkoczy P, Berger SB, Ringel F, Nagarajan S. Optimal timing of pulse onset for language mapping with navigated repetitive transcranial magnetic stimulation. Neuroimage 100, 219-236 (2014). (doi: 10.1016/j.neuroimage.2014.06.016)
[26] Sondergaard RE, Martino D, Kiss ZHT, Condliffe EG. TMS Motor Mapping Methodology and Reliability: A Structured Review. Frontiers in Neuroscience, 15, 1–13 (2021). (doi: 10.3389/fnins.2021.709368)
[27] Kraus D, Gharabaghi A. Projecting navigated TMS sites on the gyral anatomy decreases inter-subject variability of cortical motor maps. Brain Stimulation 8(4), 831-837 (2015). (doi: 10.1016/j.brs.2015.03.006)
[28] Kraus D, Gharabaghi A. Neuromuscular Plasticity: Disentangling Stable and Variable Motor Maps in the Human Sensorimotor Cortex. Neural Plasticity 2016, 7365609 (2016). (doi: 10.1155/2016/7365609)
[29] Mathew J, Kubler A, Bauer R, Gharabaghi A. Probing Corticospinal Recruitment Patterns and Functional Synergies with Transcranial Magnetic Stimulation. Frontiers in Cellular Neuroscience 10, 175 (2016). (doi: 10.3389/fncel.2016.00175)
[30] Sollmann N, Krieg SM, Säisänen L, Julkunen P. Mapping of motor function with neuronavigated transcranial magnetic stimulation: a review on clinical application in brain tumors and methods for ensuring feasible accuracy. Brain Sciences, 11(7), 897 (2021). (doi: 10.3390/brainsci11070897)
[31] Julkunen P, Säisänen L, Danner N, Niskanen E, Hukkanen T, Mervaala E, Könönen M. Comparison of navigated and non-navigated transcranial magnetic stimulation for motor cortex mapping, motor threshold and motor evoked potentials. Neuroimage 44(3), 790-795 (2009). (doi: 10.1016/j.neuroimage.2008.09.040)
[32] Ruohonen J, Karhu J. Navigated transcranial magnetic stimulation. Neurophysiologie clinique/Clinical neurophysiology, 40(1), 7-17 (2010). (doi: 10.1016/j.neucli.2010.01.006)
[33] Opitz A, Zafar N, Bockermann V, Rohde V, Paulus W. Validating computationally predicted TMS stimulation areas using direct electrical stimulation in patients with brain tumors near precentral regions. NeuroImage: Clinical 4, 500-507 (2014). (doi: 10.1016/j.nicl.2014.03.004)
[34] Mandija S, Petrov PI, Neggers SF, Luijten PR, van den Berg CA. MR‐based measurements and simulations of the magnetic field created by a realistic transcranial magnetic stimulation (TMS) coil and stimulator. NMR in Biomedicine, 29(11), 1590-1600 (2016). (doi: 10.1002/nbm.3618)
[35] Magsood H, Hadimani RL. Development of anatomically accurate brain phantom for experimental validation of stimulation strengths during TMS. Materials Science and Engineering: C, 120, 111705 (2021). (doi: 10.1016/j.msec.2020.111705)
[36] Opitz A, Legon W, Rowlands A, Bickel WK, Paulus W, Tyler WJ. Physiological observations validate finite element models for estimating subject-specific electric field distributions induced by transcranial magnetic stimulation of the human motor cortex. Neuroimage 81, 253-264 (2013). (doi: 10.1016/j.neuroimage.2013.04.067)
[37] Aonuma S, Gomez-Tames J, Laakso I, Hirata A, Takakura T, Tamura M, Muragaki Y. A high-resolution computational localization method for transcranial magnetic stimulation mapping. Neuroimage 172(1), 85-93 (2018). (doi: 10.1016/j.neuroimage.2018.01.039)
[38] Niyazov DM, Butler AJ, Kadah YM, Epstein CM, Hu XP. Functional magnetic resonance imaging and transcranial magnetic stimulation: effects of motor imagery, movement and coil orientation. Clinical Neurophysiology, 116(7), 1601-1610 (2005). (doi: 10.1016/j.clinph.2005.02.028)
[39] Laakso I, Murakami T, Hirata A, Ugawa Y. Where and what TMS activates: Experiments and modeling. Brain Stimulation 11, 166-174 (2018). (doi: 10.1016/j.brs.2017.09.011)
[40] Puonti O, Iglesias JE, Van Leemput K. Fast and sequence-adaptive whole-brain segmentation using parametric Bayesian modeling. NeuroImage 143, 235-249 (2016). (doi: 10.1016/j.neuroimage.2016.09.011)
[41] Puonti O, Van Leemput K, Saturnino GB, Siebner HR, Madsen KH, Thielscher A. Accurate and robust whole-head segmentation from magnetic resonance images for individualized head modeling, Neuroimage 219, 117044 (2020). (doi: 10.1016/j.neuroimage.2020.117044)
[42] Huang Y, Dmochowski JP, Su Y, Datta A, Rorden C, Parra LC. Automated MRI segmentation for individualized modeling of current flow in the human head. Journal of Neural Engineering 10(6), 066004 (2013). (doi: 10.1088/1741-2560/10/6/066004)
[43] Huang Y, Datta A, Bikson M, Parra LC. Realistic volumetric-approach to simulate transcranial electric stimulation—ROAST—a fully automated open-source pipeline. Journal of Neural Engineering, 16(5), 056006 (2019). (doi: 10.1088/1741-2552/ab208d)
[44] Rashed EA, Gomez-Tames J, Hirata A. Development of accurate human head models for personalized electromagnetic dosimetry using deep learning. Neuroimage 202, 116132 (2019). (doi: 10.1016/j.neuroimage.2019.116132)
[45] Fortunati V, Verhaart RF, Niessen WJ, Veenland JF, Paulides MM, van Walsum T. Automatic tissue segmentation of head and neck MR images for hyperthermia treatment planning. Physics in Medicine & Biology, 60(16), 6547 (2015). (doi: 10.1088/0031-9155/60/16/6547)
[46] Nielsen JD, Madsen KH, Puonti O, Siebner HR, Bauer C, Madsen CG, Saturnino GB, Thielscher A. Automatic skull segmentation from MR images for realistic volume conductor models of the head: Assessment of the state-of-the-art. Neuroimage 174, 587-598 (2018). (doi: 10.1016/j.neuroimage.2018.03.001)
[47] Thielscher A, Antunes A, Saturnino GB. Field modeling for transcranial magnetic stimulation: A useful tool to understand the physiological effects of TMS? 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), (2015). (doi: 10.1109/embc.2015.7318340)
[48] Saturnino GB, Madsen KH, Thielscher A. Electric field simulations for transcranial brain stimulation using FEM: an efficient implementation and error analysis. Journal of Neural Engineering 16(6), 066032 (2019). (doi: 10.1088/1741-2552/ab41ba)
[49] Oldfield RC. The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia 9(1), 97-113 (1971). (doi: 10.1016/0028-3932(71)90067-4)
[50] Pascual-Leone A, Davey NJ, Rothwell J, Wasserman EM, Puri BK (Eds.). Handbook of transcranial magnetic stimulation. Arnold (2002).
[51] Sommer M, Alfaro A, Rummel M, Speck S, Lang N, Tings T, Paulus W. Half sine, monophasic and biphasic transcranial magnetic stimulation of the human motor cortex. Clinical Neurophysiology, 117(4), 838-844 (2006). (doi: 10.1016/j.clinph.2005.10.029)
[52] Kammer T, Beck S, Thielscher A, Laubis-Herrmann U, Topka H. Motor thresholds in humans: a transcranial magnetic stimulation study comparing different pulse waveforms, current directions and stimulator types. Clinical Neurophysiology, 112(2), 250-258 (2001). (doi: 10.1016/s1388-2457(00)00513-7)
[53] Weise, K., Numssen, O., Kalloch, B., Zier, A. L., Thielscher, A., Hartwigsen, G., & Knösche, T. R. (2021). A protocol for precise TMS motor-mapping - data and code. osf.io https://doi.org/10.17605/OSF.IO/MYRQN
[54] Rossi S, Antal A, Bestmann S, Bikson M, Brewer C, Brockmöller J, et al.. Safety and recommendations for TMS use in healthy subjects and patient populations, with updates on training, ethical and regulatory issues: Expert Guidelines. Clinical Neurophysiology 132(1), 269-306 (2021). (doi: 10.1016/j.clinph.2020.10.003)
[55] Bikson M, Hanlon CA, Woods AJ, Gillick BT, Charvet L, Lamm, C et al.. Guidelines for TMS/tES clinical services and research through the COVID-19 pandemic. Brain stimulation 13(4), 1124-1149 (2020). (doi: 10.1016/j.brs.2020.05.010)
[56] Li X, Morgan PS, Ashburner J, Smith J, Rorden C. The first step for neuroimaging data analysis: DICOM to NIfTI conversion. Journal of Neuroscience Methods 264, 47-56 (2016). (doi: 10.1016/j.jneumeth.2016.03.001)
[57] Dale AM, Fischl B, Sereno MI. Cortical surface-based analysis. I. Segmentation and surface reconstruction. Neuroimage 9(2), 179-194 (1999). (doi: 10.1006/nimg.1998.0395)
[58] Fischl B, Sereno MI, Dale AM. Cortical surface-based analysis. II: Inflation, flattening, and a surface-based coordinate system. Neuroimage 9(2), 195-207 (1999). (doi: 10.1006/nimg.1998.0396)
[59] Geuzaine C, Remacle, J-F. Gmsh: a three-dimensional finite element mesh generator with built-in pre- and post-processing facilities. International Journal for Numerical Methods in Engineering, 79(11), 1309-1331 (2009). (doi: 10.1002/nme.2579)
[60] Ahrens, James, Geveci, Berk, Law, Charles, ParaView: An End-User Tool for Large Data Visualization, Visualization Handbook, Elsevier (2005). (ISBN-13: 978-0123875822 )
[61] Ayachit, Utkarsh, The ParaView Guide: A Parallel Visualization Application, Kitware (2015). (ISBN 978-1930934306)
[62] Saturnino GB, Thielscher A, Madsen KH, Knösche TR, Weise K. A principled approach to conductivity uncertainty analysis in electric field calculations. Neuroimage 188, 821-834 (2019). (doi: 10.1016/j.neuroimage.2018.12.053)
[63] Julkunen P, Säisänen L, Hukkanen T, Danner N, Könönen M. Does second-scale intertrial interval affect motor evoked potentials induced by single-pulse transcranial magnetic stimulation? Brain Stimulation, 5(4), 526-532 (2012). (doi: 10.1016/j.brs.2011.07.006)
[64] Brasil‐Neto JP, Cohen LG, Hallett M. Central fatigue as revealed by postexercise decrement of motor evoked potentials. Muscle & Nerve: Official Journal of the American Association of Electrodiagnostic Medicine, 17(7), 713-719 (1994). (doi: 10.1002/mus.880170702)
[65] Awiszus F, Chapter 2 TMS and threshold hunting. In Transcranial Magnetic Stimulation and Transcranial Direct Current Stimulation, Proceedings of the 2nd International Transcranial Magnetic Stimulation (TMS) and Transcranial Direct Current Stimulation (tDCS) Symposium (pp. 13-23).
[66] Gray H. Anatomy of the Human Body. Philadelphia: Lea & Febiger, 1918; Bartleby.com, (2000).
[67] Rossini PM, Burke D, Chen R, Cohen LG, Daskalakis Z, Di Iorio R, Di Lazzaro V, Ferreri F, Fitzgerald PB, George MS, Hallett M, Lefaucheur JP, Langguth B, Matsumoto H, Miniussi C, Nitsche MA, Pascual-Leone A, Paulus W, Rossi S, Rothwell JC, Siebner HR, Ugawa Y, Walsh V, Ziemann U. Non-invasive electrical and magnetic stimulation of the brain, spinal cord, roots and peripheral nerves: Basic principles and procedures for routine clinical and research application. An updated report from an IFCN Committee. Clinical neurophysiology, 126(6), 1071-1107 (2015). (doi: 10.1016/j.clinph.2015.02.001)
[68] Möller C, Arai N, Lücke J, Ziemann U. Hysteresis effects on the input–output curve of motor evoked potentials. Clinical Neurophysiology 120(5), 1003-1008 (2009). (doi: 10.1016/j.clinph.2009.03.001)
[69] Schmidt S, Cichy RM, Kraft A, Brocke J, Irlbacher K, Brandt SA. An initial transient-state and reliable measures of corticospinal excitability in TMS studies. Clinical Neurophysiology, 120(5), 987-993 (2009). (doi: 10.1016/j.clinph.2009.02.164)
[70] Brasil-Neto JP, Cohen LG, Panizza M, Nilsson J, Roth BJ, Hallett, M. Optimal focal transcranial magnetic activation of the human motor cortex: effects of coil orientation, shape of the induced current pulse, and stimulus intensity. Journal of Clinical Neurophysiology 9(1), 132-136 (1992). (PMID: 1552001)
[71] Mills KR, Boniface SJ, Schubert M. Magnetic brain stimulation with a double coil: the importance of coil orientation. Electroencephalography and Clinical Neurophysiology/Evoked Potentials 85(1), 17-21 (1992). (doi: 10.1016/0168-5597(92)90096-T)
[72] Bungert A, Antunes A, Espenhahn S, Thielscher A. Where does TMS Stimulate the Motor Cortex? Combining Electrophysiological Measurements and Realistic Field Estimates to Reveal the Affected Cortex Position. Cerebral Cortex, 27, 5083-5094 (2017). (doi: 10.1093/cercor/bhw292)
[73] Pellegrini M, Zoghi M, Jaberzadeh S. The effect of transcranial magnetic stimulation test intensity on the amplitude, variability and reliability of motor evoked potentials. Brain Research 1700, 190-198 (2018). (doi: 10.1016/j.brainres.2018.09.002)