1-Ortega-Paz, L., Capodanno, D., Montalescot, G., & Angiolillo, D. J. (2021). Coronavirus Disease 2019-Associated Thrombosis and Coagulopathy: Review of the Pathophysiological Characteristics and Implications for Antithrombotic Management. Journal of the American Heart Association, 10(3), e019650. https://doi.org/10.1161/JAHA.120.019650
2-Wang, D., Hu, B., Hu, C., Zhu, F., Liu, X., Zhang, J., Wang, B., Xiang, H., Cheng, Z., Xiong, Y., Zhao, Y., Li, Y., Wang, X., & Peng, Z. (2020). Clinical Characteristics of 138 Hospitalized Patients With 2019 Novel Coronavirus-Infected Pneumonia in Wuhan, China. JAMA, 323(11), 1061–1069. https://doi.org/10.1001/jama.2020.1585
3-Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y, Zhang L, Fan G, Xu J, Gu X, Cheng Z, Yu T, Xia J, Wei Y, Wu W, Xie X, Yin W, Li H, Liu M, Xiao Y, Gao H, Guo L, Xie J, Wang G, Jiang R, Gao Z, Jin Q, Wang J, Cao B. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020 Feb 15;395(10223):497-506. doi: 10.1016/S0140-6736(20)30183-5. Epub 2020 Jan 24. Erratum in: Lancet. 2020 Jan 30;: PMID: 31986264; PMCID: PMC7159299.
4-Hoffmann M, Kleine-Weber H, Schroeder S, Krüger N, Herrler T, Erichsen S, Schiergens TS, Herrler G, Wu NH, Nitsche A, Müller MA, Drosten C, Pöhlmann S. SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor. Cell. 2020 Apr 16;181(2):271-280.e8. doi: 10.1016/j.cell.2020.02.052. Epub 2020 Mar 5. PMID: 32142651; PMCID: PMC7102627.
5-Tikellis C, Thomas MC. Angiotensin-Converting Enzyme 2 (ACE2) Is a Key Modulator of the Renin Angiotensin System in Health and Disease. Int J Pept. 2012;2012:256294. doi: 10.1155/2012/256294. Epub 2012 Mar 20. PMID: 22536270; PMCID: PMC3321295.
6-Witberg G, Barda N, Hoss S, Richter I, Wiessman M, Aviv Y, Grinberg T, Auster O, Dagan N, Balicer RD, Kornowski R. Myocarditis after Covid-19 Vaccination in a Large Health Care Organization. N Engl J Med. 2021 Dec 2;385(23):2132-2139. doi: 10.1056/NEJMoa2110737. Epub 2021 Oct 6. PMID: 34614329; PMCID: PMC8531986.
7- N, Dagan N, Ben-Shlomo Y, Kepten E, Waxman J, Ohana R, Hernán MA, Lipsitch M, Kohane I, Netzer D, Reis BY, Balicer RD. Safety of the BNT162b2 mRNA Covid-19 Vaccine in a Nationwide Setting. N Engl J Med. 2021 Sep 16;385(12):1078-1090. doi: 10.1056/NEJMoa2110475. Epub 2021 Aug 25. PMID: 34432976; PMCID: PMC8427535.
8- Wallace M, Oliver S. COVID-19 mRNA vaccines in adolescents and young adults: benefit-risk discussion. Presented at the Advisory Committee on Immunization Practices Meeting, Atlanta, June 23–25, 2021 (https://www.cdc.gov/vaccines/acip/meetings/downloads/slides-2021-06/05-COVID-Wallace-508.pdf. opens in new tab).
9-Connors JM, Levy JH. Thromboinflammation and the hypercoagulability of COVID-19. J Thromb Haemost. 2020 Jul;18(7):1559-1561. doi: 10.1111/jth.14849. Epub 2020 May 26. PMID: 32302453.
10-Thachil J, Tang N, Gando S, Falanga A, Cattaneo M, Levi M, Clark C, Iba T. ISTH interim guidance on recognition and management of coagulopathy in COVID-19. J Thromb Haemost. 2020 May;18(5):1023-1026. doi: 10.1111/jth.14810. Epub 2020 Apr 27. PMID: 32338827.
11-Thachil J, Cushman M, Srivastava A. A proposal for staging COVID-19 coagulopathy. Res Pract Thromb Haemost. 2020 Jul 6;4(5):731-736. doi: 10.1002/rth2.12372. PMID: 32685880; PMCID: PMC7272892.
.
12-Tsilingiris D, Vallianou NG, Karampela I, Dalamaga M. Vaccine induced thrombotic thrombocytopenia: The shady chapter of a success story. Metabol Open. 2021 Sep;11:100101. doi: 10.1016/j.metop.2021.100101. Epub 2021 Jun 18. PMID: 34179744; PMCID: PMC8217988.
13-Iba T, Levy JH, Warkentin TE. Recognizing Vaccine-Induced Immune Thrombotic Thrombocytopenia. Crit Care Med. 2022 Jan 1;50(1):e80-e86. doi: 10.1097/CCM.0000000000005211. PMID: 34259661; PMCID: PMC8670081.
14-Lee, E. J., Cines, D. B., Gernsheimer, T., Kessler, C., Michel, M., Tarantino, M. D., Semple, J. W., Arnold, D. M., Godeau, B., Lambert, M. P., & Bussel, J. B. (2021). Thrombocytopenia following Pfizer and Moderna SARS-CoV-2 vaccination. American journal of hematology, 96(5), 534–537. https://doi.org/10.1002/ajh.26132
15-Tang Y, Liu J, Zhang D, Xu Z, Ji J, Wen C. Cytokine Storm in COVID-19: The Current Evidence and Treatment Strategies. Front Immunol. 2020 Jul 10;11:1708. doi: 10.3389/fimmu.2020.01708. PMID: 32754163; PMCID: PMC7365923.
16-Vatansever, H. S., & Becer, E. (2020). Relationship between IL-6 and COVID-19: to be considered during treatment. Future Virology, 10.2217/fvl-2020-0168. https://doi.org/10.2217/fvl-2020-0168
17-Patra T, Meyer K, Geerling L, Isbell TS, Hoft DF, Brien J, Pinto AK, Ray RB, Ray R. SARS-CoV-2 spike protein promotes IL-6 trans-signaling by activation of angiotensin II receptor signaling in epithelial cells. PLoS Pathog. 2020 Dec 7;16(12):e1009128. doi: 10.1371/journal.ppat.1009128. PMID: 33284859; PMCID: PMC7746263.
18- Bergamaschi C, Terpos E, Rosati M, Angel M, Bear J, Stellas D, Karaliota S, Apostolakou F, Bagratuni T, Patseas D, Gumeni S, Trougakos IP, Dimopoulos MA, Felber BK, Pavlakis GN. Systemic IL-15, IFN-γ, and IP-10/CXCL10 signature associated with effective immune response to SARS-CoV-2 in BNT162b2 mRNA vaccine recipients. Cell Rep. 2021 Aug 10;36(6):109504. doi: 10.1016/j.celrep.2021.109504. Epub 2021 Jul 23. PMID: 34352226; PMCID: PMC8299183.
19-Gebre, M. S., Rauch, S., Roth, N., Gergen, J., Yu, J., Liu, X., Cole, A. C., Mueller, S. O., Petsch, B., & Barouch, D. H. (2021). mRNA Vaccines Induce Rapid Antibody Responses in Mice. bioRxiv : the preprint server for biology, 2021.11.01.466863. https://doi.org/10.1101/2021.11.01.466863
20- Edwards, D. K., Jasny, E., Yoon, H., Horscroft, N., Schanen, B., Geter, T., Fotin-Mleczek, M., Petsch, B., & Wittman, V. (2017). Adjuvant effects of a sequence-engineered mRNA vaccine: translational profiling demonstrates similar human and murine innate response. Journal of translational medicine, 15(1), 1. https://doi.org/10.1186/s12967-016-1111-6
21-Ekström M, Eriksson P, Tornvall P. Vaccination, a human model of inflammation, activates systemic inflammation but does not trigger proinflammatory gene expression in adipose tissue. J Intern Med. 2008 Dec;264(6):613-7. doi: 10.1111/j.1365-2796.2008.01998.x. PMID: 19017180.
22-Obi S, Nakajima T, Hasegawa T, Kikuchi H, Oguri G, Takahashi M, Nakamura F, Yamasoba T, Sakuma M, Toyoda S, Tei C, Inoue T. Heat induces interleukin-6 in skeletal muscle cells via TRPV1/PKC/CREB pathways. J Appl Physiol (1985). 2017 Mar 1;122(3):683-694. doi: 10.1152/japplphysiol.00139.2016. Epub 2016 Dec 15. PMID: 27979980.
23-Fischer CP. Interleukin-6 in acute exercise and training: what is the biological relevance? Exerc Immunol Rev 12: 6–33, 2006.
24- Pedersen BK, Steensberg A, Schjerling P. Exercise and interleukin-6. Curr Opin Hematol. 2001 May;8(3):137-41. doi: 10.1097/00062752-200105000-00002. PMID: 11303145.
25- Dace Reihmane & Flemming Dela (2014) Interleukin-6: Possible biological roles during exercise, European Journal of Sport Science, 14:3, 242-250, DOI: 10.1080/17461391.2013.776640
26- Gómez-Rubio P, Trapero I. The Effects of Exercise on IL-6 Levels and Cognitive Performance in Patients with Schizophrenia. Diseases. 2019;7(1):11. Published 2019 Jan 22. doi:10.3390/diseases7010011
27-Pernille Hojman, Camilla Brolin, Nynne Nørgaard-Christensen, Christine Dethlefsen, Britt Lauenborg, Cecilie Køllner Olsen, Mette Marie Åbom, Thomas Krag, Julie Gehl, and Bente Klarlund Pedersen , IL-6 release from muscles during exercise is stimulated by lactate-dependent protease activity. American Journal of Physiology-Endocrinology and Metabolism 2019 316:5, E940-E947. https://doi.org/10.1152/ajpendo.00414.2018
28-Deus AP, Bassi D, Simões RP, Oliveira CR, Baldissera V, de Cássia Marqueti R, Araujo HSS, Arena R, Borghi-Silva A. MMP(-2) expression in skeletal muscle after strength training. Int J Sports Med 33: 137–141, 2012. doi:10.1055/s-0031-1291224.
29-Mackey AL, Donnelly AE, Turpeenniemi-Hujanen T, Roper HP. Skeletal muscle collagen content in humans after high-force eccentric contractions. J Appl Physiol (1985) 97: 197–203, 2004. doi:10.1152/japplphysiol.01174.2003.
30-Rullman E, Norrbom J, Strömberg A, Wågsäter D, Rundqvist H, Haas T, Gustafsson T. Endurance exercise activates matrix metalloproteinases in human skeletal muscle. J Appl Physiol (1985) 106: 804–812, 2009. doi:10.1152/japplphysiol.90872.2008.
31-Rullman E, Rundqvist H, Wågsäter D, Fischer H, Eriksson P, Sundberg CJ, Jansson E, Gustafsson T. A single bout of exercise activates matrix metalloproteinase in human skeletal muscle. J Appl Physiol (1985) 102: 2346–2351, 2007. doi:10.1152/japplphysiol.00822.2006.
32-Gupta AK, Mishra S (2016) Sarcopenia and the syndrome of frailty. The Egyptian Society of Internal Medicine28: 133-139.
33-Pedersen BK(2011) Muscles and their myokines. The Journal of Experimental Biology 214: 337-346.
34- Ahima RS, Park HK (2015) Connecting Myokines and Metabolism. Endocrinol Metab 30: 235-245.
35-Helge JW, Klein DK, Andersen TM, van Hall G, Calbet J, Boushel R, Saltin B. Interleukin-6 release is higher across arm than leg muscles during whole-body exercise. Exp Physiol 96: 590–598, 2011. doi:10.1113/expphysiol.2010.056424
36-Heymans, S., Cooper, L.T. Myocarditis after COVID-19 mRNA vaccination: clinical observations and potential mechanisms. Nat Rev Cardiol (2021). https://doi.org/10.1038/s41569-021-00662-w
37-Mevorach, D. et al. Myocarditis after BNT162b2 mRNA vaccine against Covid-19 in Israel. N. Engl. J. Med
38-Heymans, S., Cooper, L.T. Myocarditis after COVID-19 mRNA vaccination: clinical observations and potential mechanisms. Nat Rev Cardiol (2021). https://doi.org/10.1038/s41569-021-00662-w
39-Danesh, J., Kaptoge, S., Mann, A. G., Sarwar, N., Wood, A., Angleman, S. B., Wensley, F., Higgins, J. P., Lennon, L., Eiriksdottir, G., Rumley, A., Whincup, P. H., Lowe, G. D., & Gudnason, V. (2008). Long-term interleukin-6 levels and subsequent risk of coronary heart disease: two new prospective studies and a systematic review. PLoS medicine, 5(4), e78. https://doi.org/10.1371/journal.pmed.0050078
40-Haakonsen HB, Nystedt A. Deep vein thrombosis more than two weeks after vaccination against COVID-19. Tidsskr Nor Laegeforen. 2021 Apr 28;141. English, Norwegian. doi: 10.4045/tidsskr.21.0274. PMID: 33928773.
41-Bhan, Chandur et al. “An unusual presentation of acute deep vein thrombosis after the Moderna COVID-19 vaccine-a case report.” Annals of translational medicine vol. 9,20 (2021): 1605. doi:10.21037/atm-21-2772
42-Kaser A, Brandacher G, Steurer W, Kaser S, Offner FA, Zoller H, Theurl I, Widder W, Molnar C, Ludwiczek O, Atkins MB, Mier JW, Tilg H. Interleukin-6 stimulates thrombopoiesis through thrombopoietin: role in inflammatory thrombocytosis. Blood. 2001 Nov 1;98(9):2720-5. doi: 10.1182/blood.v98.9.2720. PMID: 11675343.
43-Senchenkova, Elena Y et al. “Interleukin-6 mediates the platelet abnormalities and thrombogenesis associated with experimental colitis.” The American journal of pathology vol. 183,1 (2013): 173-81. doi:10.1016/j.ajpath.2013.03.014
44-Nosaka, Mizuho et al. “Crucial Involvement of IL-6 in Thrombus Resolution in Mice via Macrophage Recruitment and the Induction of Proteolytic Enzymes.” Frontiers in immunology vol. 10 3150. 7 Feb. 2020, doi:10.3389/fimmu.2019.03150
45-Martínez-Flores, D., Zepeda-Cervantes, J., Cruz-Reséndiz, A., Aguirre-Sampieri, S., Sampieri, A., & Vaca, L. (2021). SARS-CoV-2 Vaccines Based on the Spike Glycoprotein and Implications of New Viral Variants. Frontiers in immunology, 12, 701501. https://doi.org/10.3389/fimmu.2021.701501