1. Sufriyana, H., et al. Comparison of Multivariable Logistic Regression and Other Machine Learning Algorithms for Prognostic Prediction Studies in Pregnancy Care: Systematic Review and Meta-Analysis. JMIR Med Inform 8, e16503 (2020).
2. Fleuren, L.M., et al. Machine learning for the prediction of sepsis: a systematic review and meta-analysis of diagnostic test accuracy. Intensive Care Med 46, 383-400 (2020).
3. Lee, Y., et al. Applications of machine learning algorithms to predict therapeutic outcomes in depression: A meta-analysis and systematic review. J Affect Disord 241, 519-532 (2018).
4. Gonem, S., Janssens, W., Das, N. & Topalovic, M. Applications of artificial intelligence and machine learning in respiratory medicine. Thorax 75, 695-701 (2020).
5. Bien, N., et al. Deep-learning-assisted diagnosis for knee magnetic resonance imaging: Development and retrospective validation of MRNet. PLoS Med 15, e1002699 (2018).
6. Hannun, A.Y., et al. Cardiologist-level arrhythmia detection and classification in ambulatory electrocardiograms using a deep neural network. Nat Med 25, 65-69 (2019).
7. Rajpurkar, P., et al. Deep learning for chest radiograph diagnosis: A retrospective comparison of the CheXNeXt algorithm to practicing radiologists. PLoS Med 15, e1002686 (2018).
8. Scott, I., Carter, S. & Coiera, E. Clinician checklist for assessing suitability of machine learning applications in healthcare. BMJ Health Care Inform 28(2021).
9. Huber, W., et al. Orchestrating high-throughput genomic analysis with Bioconductor. Nat Methods 12, 115-121 (2015).
10. Stalpers, L.J.A. & Kaplan, E.L. Edward L. Kaplan and the Kaplan-Meier Survival Curve. BSHM Bulletin: Journal of the British Society for the History of Mathematics 33, 109-135 (2018).