1. Fleuren, L.M., et al. Machine learning for the prediction of sepsis: a systematic review and meta-analysis of diagnostic test accuracy. Intensive Care Med 46, 383-400 (2020).
2. Lee, Y., et al. Applications of machine learning algorithms to predict therapeutic outcomes in depression: A meta-analysis and systematic review. J Affect Disord 241, 519-532 (2018).
3. Gonem, S., Janssens, W., Das, N. & Topalovic, M. Applications of artificial intelligence and machine learning in respiratory medicine. Thorax 75, 695-701 (2020).
4. Sufriyana, H., et al. Comparison of Multivariable Logistic Regression and Other Machine Learning Algorithms for Prognostic Prediction Studies in Pregnancy Care: Systematic Review and Meta-Analysis. JMIR Med Inform 8, e16503 (2020).
5. Hernán, M.A. & Robins, J.M. Causal Inference: What If. , (Chapman & Hall/CRC, Boca Raton, 2020).
6. Wilkinson, J., et al. Time to reality check the promises of machine learning-powered precision medicine. Lancet Digit Health 2, e677-e680 (2020).
7. Hernán, M.A. How to estimate the effect of treatment duration on survival outcomes using observational data. Bmj 360, k182 (2018).
8. Chatton, A., et al. G-computation, propensity score-based methods, and targeted maximum likelihood estimator for causal inference with different covariates sets: a comparative simulation study. Sci Rep 10, 9219 (2020).
9. Naimi, A.I., Cole, S.R. & Kennedy, E.H. An introduction to g methods. Int J Epidemiol 46, 756-762 (2017).
10. Doosti-Irani, A., Mansournia, M.A. & Collins, G. Use of G-methods for handling time-varying confounding in observational research. Lancet Glob Health 7, e35 (2019).
11. Moons, K.G.M., et al. PROBAST: A Tool to Assess Risk of Bias and Applicability of Prediction Model Studies: Explanation and Elaboration. Ann Intern Med 170, W1-w33 (2019).
12. Huber, W., et al. Orchestrating high-throughput genomic analysis with Bioconductor. Nat Methods 12, 115-121 (2015).
13. Falagas, M.E., Pitsouni, E.I., Malietzis, G.A. & Pappas, G. Comparison of PubMed, Scopus, Web of Science, and Google Scholar: strengths and weaknesses. Faseb j 22, 338-342 (2008).
14. Goodman, L.A. Snowball Sampling. The Annals of Mathematical Statistics 32, 148-170, 123 (1961).
15. Lee, J. & Spratling, R. Recruiting Mothers of Children With Developmental Disabilities: Adaptations of the Snowball Sampling Technique Using Social Media. J Pediatr Health Care 33, 107-110 (2019).
16. ACOG. Practice Bulletin No. 172: Premature Rupture of Membranes. Obstet Gynecol 128, e165-177 (2016).
17. Dukes, O. & Vansteelandt, S. A Note on G-Estimation of Causal Risk Ratios. Am J Epidemiol 187, 1079-1084 (2018).
18. Hernán, M.A. The C-Word: Scientific Euphemisms Do Not Improve Causal Inference From Observational Data. Am J Public Health 108, 616-619 (2018).
19. Hernán, M. The C-Word: The More We Discuss It, the Less Dirty It Sounds. Am J Public Health 108, 625-626 (2018).
20. Van Calster, B., van Smeden, M., De Cock, B. & Steyerberg, E.W. Regression shrinkage methods for clinical prediction models do not guarantee improved performance: Simulation study. Stat Methods Med Res 29, 3166-3178 (2020).