1. Roth, G.A. et al. Global, regional, and national burden of cardiovascular diseases for 10 causes, 1990 to 2015. Journal of the American College of Cardiology 70, 1-25 (2017).
2. Abouna, G.M. in Transplantation proceedings, Vol. 40 34-38 (Elsevier, 2008).
3. Lai, R.C., Chen, T.S. & Lim, S.K. Mesenchymal stem cell exosome: a novel stem cell-based therapy for cardiovascular disease. Regenerative medicine 6, 481-492 (2011).
4. Tabar, V. & Studer, L. Pluripotent stem cells in regenerative medicine: challenges and recent progress. Nature Reviews Genetics 15, 82-92 (2014).
5. Mohamed, T.M. et al. Regulation of cell cycle to stimulate adult cardiomyocyte proliferation and cardiac regeneration. Cell 173, 104-116. e112 (2018).
6. Zhang, Y. et al. Rapid single-step induction of functional neurons from human pluripotent stem cells. Neuron 78, 785-798 (2013).
7. Qian, T. et al. Directed differentiation of human pluripotent stem cells to blood-brain barrier endothelial cells. Science advances 3, e1701679 (2017).
8. Rezania, A. et al. Reversal of diabetes with insulin-producing cells derived in vitro from human pluripotent stem cells. Nature biotechnology 32, 1121 (2014).
9. Kattman, S.J. et al. Stage-specific optimization of activin/nodal and BMP signaling promotes cardiac differentiation of mouse and human pluripotent stem cell lines. Cell stem cell 8, 228-240 (2011).
10. Burridge, P.W., Keller, G., Gold, J.D. & Wu, J.C. Production of de novo cardiomyocytes: human pluripotent stem cell differentiation and direct reprogramming. Cell stem cell 10, 16-28 (2012).
11. Lian, X. et al. Robust cardiomyocyte differentiation from human pluripotent stem cells via temporal modulation of canonical Wnt signaling. Proceedings of the National Academy of Sciences 109, E1848-E1857 (2012).
12. Yoshida, Y. & Yamanaka, S. Recent stem cell advances: induced pluripotent stem cells for disease modeling and stem cell–based regeneration. Circulation 122, 80-87 (2010).
13. Moretti, A. et al. Patient-specific induced pluripotent stem-cell models for long-QT syndrome. New England Journal of Medicine 363, 1397-1409 (2010).
14. Liang, P. et al. Drug screening using a library of human induced pluripotent stem cell–derived cardiomyocytes reveals disease-specific patterns of cardiotoxicity. Circulation 127, 1677-1691 (2013).
15. Braam, S.R., Passier, R. & Mummery, C.L. Cardiomyocytes from human pluripotent stem cells in regenerative medicine and drug discovery. Trends in pharmacological sciences 30, 536-545 (2009).
16. Chong, J.J. et al. Human embryonic-stem-cell-derived cardiomyocytes regenerate non-human primate hearts. Nature 510, 273-277 (2014).
17. Huo, J. et al. Evaluation of batch variations in induced pluripotent stem cell-derived human cardiomyocytes from 2 major suppliers. Toxicological Sciences 156, 25-38 (2017).
18. Sullivan, S. et al. Quality control guidelines for clinical-grade human induced pluripotent stem cell lines. Regenerative medicine 13, 859-866 (2018).
19. Malandraki-Miller, S., Lopez, C.A., Al-Siddiqi, H. & Carr, C.A. Changing Metabolism in Differentiating Cardiac Progenitor Cells—Can Stem Cells Become Metabolically Flexible Cardiomyocytes? Frontiers in Cardiovascular Medicine 5, 119 (2018).
20. Skala, M.C. et al. In vivo multiphoton microscopy of NADH and FAD redox states, fluorescence lifetimes, and cellular morphology in precancerous epithelia. Proceedings of the National Academy of Sciences 104, 19494-19499 (2007).
21. Nakashima, N., Yoshihara, K., Tanaka, F. & Yagi, K. Picosecond fluorescence lifetime of the coenzyme of d-amino acid oxidase. Journal of Biological Chemistry 255, 5261-5263 (1980).
22. Lakowicz, J.R., Szmacinski, H., Nowaczyk, K. & Johnson, M.L. Fluorescence lifetime imaging of free and protein-bound NADH. Proceedings of the National Academy of Sciences 89, 1271-1275 (1992).
23. Meleshina, A.V. et al. Probing metabolic states of differentiating stem cells using two-photon FLIM. Scientific reports 6, 1-11 (2016).
24. Rice, W.L., Kaplan, D.L. & Georgakoudi, I. Two-photon microscopy for non-invasive, quantitative monitoring of stem cell differentiation. PloS one 5, e10075 (2010).
25. Meleshina, A.V. et al. Two-photon FLIM of NAD (P) H and FAD in mesenchymal stem cells undergoing either osteogenic or chondrogenic differentiation. Stem cell research & therapy 8, 1-10 (2017).
26. Rodimova, S.A. et al. Metabolic activity and intracellular pH in induced pluripotent stem cells differentiating in dermal and epidermal directions. Methods and applications in fluorescence 7, 044002 (2019).
27. Uchugonova, A. Multiphoton autofluorescence lifetime imaging of induced pluripotent stem cells. Journal of biomedical optics 22, 066018 (2017).
28. Zhou, H. et al. Non-invasive Optical Biomarkers Distinguish and Track the Metabolic Status of Single Hematopoietic Stem Cells. Iscience 23, 100831 (2020).