1 Abraira, V. E. & Ginty, D. D. The sensory neurons of touch. Neuron 79, 618-639 (2013).
2 Johansson, R. S. & Flanagan, J. R. Coding and use of tactile signals from the fingertips in object manipulation tasks. Nature Reviews Neuroscience 10, 345-359 (2009).
3 Vallbo, A. B. & Johansson, R. S. Properties of cutaneous mechanoreceptors in the human hand related to touch sensation. Hum Neurobiol 3, 3-14 (1984).
4 Pruszynski, J. A. & Johansson, R. S. Edge-orientation processing in first-order tactile neurons. Nature neuroscience 17, 1404-1409 (2014).
5 Scheibert, J., Leurent, S., Prevost, A. & Debrégeas, G. The role of fingerprints in the coding of tactile information probed with a biomimetic sensor. Science 323, 1503-1506 (2009).
6 Smith, E. S. J. & Lewin, G. R. Nociceptors: a phylogenetic view. Journal of Comparative Physiology A 195, 1089-1106 (2009).
7 Dubin, A. E. & Patapoutian, A. Nociceptors: the sensors of the pain pathway. The Journal of clinical investigation 120, 3760-3772 (2010).
8 Farina, D. et al. Man/machine interface based on the discharge timings of spinal motor neurons after targeted muscle reinnervation. Nature biomedical engineering 1, 1-12 (2017).
9 Saal, H. P., Delhaye, B. P., Rayhaun, B. C. & Bensmaia, S. J. Simulating tactile signals from the whole hand with millisecond precision. Proceedings of the National Academy of Sciences 114, E5693-E5702 (2017).
10 Oddo, C. M. et al. Intraneural stimulation elicits discrimination of textural features by artificial fingertip in intact and amputee humans. Elife 5, e09148 (2016).
11 Kim, D.-H. et al. Stretchable and foldable silicon integrated circuits. Science 320, 507-511 (2008).
12 Kim, J. et al. Stretchable silicon nanoribbon electronics for skin prosthesis. Nature communications 5, 1-11 (2014).
13 Larson, C. et al. Highly stretchable electroluminescent skin for optical signaling and tactile sensing. science 351, 1071-1074 (2016).
14 Tee, B. C., Wang, C., Allen, R. & Bao, Z. An electrically and mechanically self-healing composite with pressure-and flexion-sensitive properties for electronic skin applications. Nature nanotechnology 7, 825 (2012).
15 Li, C.-H. et al. A highly stretchable autonomous self-healing elastomer. Nature chemistry 8, 618 (2016).
16 Zou, Z. et al. Rehealable, fully recyclable, and malleable electronic skin enabled by dynamic covalent thermoset nanocomposite. Science advances 4, eaaq0508 (2018).
17 Chun, K. Y., Son, Y. J., Jeon, E. S., Lee, S. & Han, C. S. A Self‐Powered Sensor Mimicking Slow‐and Fast‐Adapting Cutaneous Mechanoreceptors. Advanced Materials 30, 1706299 (2018).
18 Zhao, H., O’Brien, K., Li, S. & Shepherd, R. F. Optoelectronically innervated soft prosthetic hand via stretchable optical waveguides. Science Robotics 1, eaai7529 (2016).
19 Liu, S.-C. & Delbruck, T. Neuromorphic sensory systems. Current Opinion in Neurobiology 20, 288-295 (2010).
20 Laughlin, S. B. & Sejnowski, T. J. Communication in Neuronal Networks. Science 301, 1870 (2003).
21 Kim, S. S. et al. Conveying tactile feedback in sensorized hand neuroprostheses using a biofidelic model of mechanotransduction. IEEE transactions on biomedical circuits and systems 3, 398-404 (2009).
22 Yi, Z. & Zhang, Y. Bio-inspired tactile FA-I spiking generation under sinusoidal stimuli. Journal of Bionic Engineering 13, 612-621 (2016).
23 Friedl, K. E., Voelker, A. R., Peer, A. & Eliasmith, C. Human-inspired neurorobotic system for classifying surface textures by touch. IEEE Robotics and Automation Letters 1, 516-523 (2016).
24 Cassidy, A., Andreou, A. G. & Georgiou, J. Design of a one million neuron single FPGA neuromorphic system for real-time multimodal scene analysis. 45th Annual Conference on Information Sciences and Systems, 1-6 (2011).
25 Escudero, E. C. et al. Real-time neuro-inspired sound source localization and tracking architecture applied to a robotic platform. Neurocomputing 283, 129-139 (2018).
26 Cheung, K., Schultz, S. R. & Luk, W. A Large-Scale Spiking Neural Network Accelerator for FPGA Systems. Artificial Neural Networks and Machine Learning, 113-120 (2012).
27 Wang, R., Hamilton, T. J., Tapson, J. & Schaik, A. v. An FPGA design framework for large-scale spiking neural networks. 2014 IEEE International Symposium on Circuits and Systems (ISCAS), 457-460 (2014).
28 Wang, J., Belatreche, A., Maguire, L. & McGinnity, T. M. An online supervised learning method for spiking neural networks with adaptive structure. Neurocomputing 144, 526-536 (2014).
29 Yang, S. et al. Cost-efficient FPGA implementation of basal ganglia and their Parkinsonian analysis. Neural Networks 71, 62-75 (2015).
30 Merolla, P. A. et al. A million spiking-neuron integrated circuit with a scalable communication network and interface. Science 345, 668 (2014).
31 Nanami, T. & Kohno, T. Simple cortical and thalamic neuron models for digital arithmetic circuit implementation. Frontiers in neuroscience 10, 181 (2016).
32 Wang, R. M., Thakur, C. S. & van Schaik, A. An FPGA-based massively parallel neuromorphic cortex simulator. Frontiers in neuroscience 12, 213 (2018).
33 Zjajo, A. et al. A real-time reconfigurable multichip architecture for large-scale biophysically accurate neuron simulation. IEEE transactions on biomedical circuits and systems 12, 326-337 (2018).
34 Franceschi, M., Camus, V., Ibrahim, A., Enz, C. & Valle, M. Approximate FPGA implementation of CORDIC for tactile data processing using speculative adders. New Generation of CAS (NGCAS), 41-44 (2017).
35 Ambroise, M. et al. Biomimetic neural network for modifying biological dynamics during hybrid experiments. Artificial Life and Robotics 22, 398-403 (2017).
36 Salimi-Nezhad, N., Amiri, M., Falotico, E. & Laschi, C. A digital hardware realization for spiking model of cutaneous mechanoreceptor. Frontiers in neuroscience 12, 322 (2018).
37 Osborn, L. E. et al. Prosthesis with neuromorphic multilayered e-dermis perceives touch and pain. Science robotics 3, eaat3818 (2018).
38 Salimi-Nezhad, N., Ilbeigi, E., Amiri, M., Falotico, E. & Laschi, C. A Digital Hardware System for Spiking Network of Tactile Afferents. Frontiers in Neuroscience 13, 1330 (2019).
39 Hay, E. & Pruszynski, J. A. Orientation processing by synaptic integration across first-order tactile neurons. bioRxiv, 396705 (2018).
40 Teja, S., Mekie, J., Cabibihan, J.-J., Thakor, N. V. & Kukreja, S. L. Fault tolerant tactile sensor arrays for prosthesis. 6th IEEE International Conference on Biomedical Robotics and Biomechatronics (BioRob), 31-34 (2016).
41 Knibestöl, M. Stimulus-response functions of slowly adapting mechanoreceptors in the human glabrous skin area. The Journal of Physiology 245, 63-80 (1975).
42 Delhaye, B. P., Long, K. H. & Bensmaia, S. J. Neural basis of touch and proprioception in primate cortex. Comprehensive Physiology 8, 1575-1602 (2011).
43 Kim, E. K., Wellnitz, S. A., Bourdon, S. M., Lumpkin, E. A. & Gerling, G. J. Force sensor in simulated skin and neural model mimic tactile SAI afferent spiking response to ramp and hold stimuli. Journal of neuroengineering 9, 1-14 (2012).
44 Rongala, U. B., Mazzoni, A. & Oddo, C. M. Neuromorphic artificial touch for categorization of naturalistic textures. IEEE transactions on neural networks and learning systems 28, 819-829 (2015).
45 Victor, J. D. & Purpura, K. P. Metric-space analysis of spike trains: theory, algorithms and application. Network: computation in neural systems 8, 127-164 (1997).
46 Izhikevich, E. M. Simple model of spiking neurons. IEEE Transactions on neural networks 14, 1569-1572 (2003).
47 Lumelsky, V. J., Shur, M. S. & Wagner, S. Sensitive skin. IEEE Sensors Journal 1, 41-51 (2001).
48 Mittendorfer, P. & Cheng, G. Humanoid Multimodal Tactile-Sensing Modules. IEEE Transactions on Robotics 27, 401-410 (2011).
49 Farserotu, J. et al. Smart skin for tactile prosthetics. 6th International Symposium on Medical Information and Communication Technology (ISMICT), 1-8 (2012).
50 Cassidy, A. & Andreou, A. G. Dynamical digital silicon neurons. IEEE Biomedical Circuits and Systems Conference, 289-292 (2008).
51 Vargas-Irwin, C. E., Brandman, D. M., Zimmermann, J. B., Donoghue, J. P. & Black, M. J. Spike train SIMilarity Space (SSIMS): a framework for single neuron and ensemble data analysis. Neural computation 27, 1-31 (2015).