1. Varki, A., Biological roles of glycans. Glycobiology, 2017. 27(1): p. 3-49.
2. Cummings, R.D. and J.M. Pierce, The challenge and promise of glycomics. Chem Biol, 2014. 21(1): p. 1-15.
3. Zhang, L., Glycosaminoglycans in development, health and disease. Preface. Prog Mol Biol Transl Sci, 2010. 93: p. xvii-xviii.
4. Schachter, H. and H.H. Freeze, Glycosylation diseases: quo vadis? Biochim Biophys Acta, 2009. 1792(9): p. 925-30.
5. Hart, G.W. and R.J. Copeland, Glycomics hits the big time. Cell, 2010. 143(5): p. 672-6.
6. Bennun, S.V., et al., Systems Glycobiology: Integrating Glycogenomics, Glycoproteomics, Glycomics, and Other 'Omics Data Sets to Characterize Cellular Glycosylation Processes. J Mol Biol, 2016. 428(16): p. 3337-3352.
7. Rojas-Macias, M.A., et al., Towards a standardized bioinformatics infrastructure for N- and O-glycomics. Nat Commun, 2019. 10(1): p. 3275.
8. Hu, M., et al., Glycan-based biomarkers for diagnosis of cancers and other diseases: Past, present, and future. Prog Mol Biol Transl Sci, 2019. 162: p. 1-24.
9. Frazier, S.B., et al., The Quantification of Glycosaminoglycans: A Comparison of HPLC, Carbazole, and Alcian Blue Methods. Open Glycosci, 2008. 1: p. 31-39.
10. Studelska, D.R., et al., Quantification of glycosaminoglycans by reversed-phase HPLC separation of fluorescent isoindole derivatives. Glycobiology, 2006. 16(1): p. 65-72.
11. McDowell, L.M., et al., Inhibition or activation of Apert syndrome FGFR2 (S252W) signaling by specific glycosaminoglycans. J Biol Chem, 2006. 281(11): p. 6924-30.
12. Studelska, D.R., et al., High affinity glycosaminoglycan and autoantigen interaction explains joint specificity in a mouse model of rheumatoid arthritis. J Biol Chem, 2009. 284(4): p. 2354-62.
13. Lu, H., et al., Glycosaminoglycans in Human and Bovine Serum: Detection of Twenty-Four Heparan Sulfate and Chondroitin Sulfate Motifs Including a Novel Sialic Acid-modified Chondroitin Sulfate Linkage Hexasaccharide. Glycobiol Insights, 2010. 2010(2): p. 13-28.
14. Pan, J., et al., Identification of Chemically Sulfated/desulfated Glycosaminoglycans in Contaminated Heparins and Development of a Simple Assay for the Detection of Most Contaminants in Heparin. Glycobiol Insights, 2010. 2010(2): p. 1-12.
15. Pan, J., et al., Oversulfated chondroitin sulfate is not the sole contaminant in heparin. Nature Biotechnology, 2010. 28(3): p. 203-207.
16. Pan, J., et al., Glycosaminoglycans and activated contact system in cancer patient plasmas. Prog Mol Biol Transl Sci, 2010. 93: p. 473-95.
17. He, Y.L., et al., Optimizing microwave-assisted hydrolysis conditions for monosaccharide composition analyses of different polysaccharides. International Journal of Biological Macromolecules, 2018. 118: p. 327-332.
18. Zhang, L. and Y. Liu, Detection of free mannose and glucose in serum using high performance liquid chromatography US16/618,033, 2020.
19. Zhang, L., et al., Application of a method for detecting monosaccharides hydrolyzed from blood samples for cancer detection, S.I.P.O.o.t. P.R.C, Editor. 2015: China. p. 11.
20. Zhang, M., et al., Using a PCR instrument to hydrolyze polysaccharides for monosaccharide composition analyses. Carbohydrate Polymers, 2020. 240: p. 116.
21. Gasilova, E.R., et al., Association of kappa-carrageenan subjected to deep alkaline hydrolysis. Biopolymers, 2018. 109(9): p. e23236.
22. Wang, Q.C., et al., Influences of acidic reaction and hydrolytic conditions on monosaccharide composition analysis of acidic, neutral and basic polysaccharides. Carbohydr Polym, 2016. 143: p. 296-300.
23. Zhu, H., et al., Acidolysis-based component mapping of glycosaminoglycans by reversed-phase high-performance liquid chromatography with off-line electrospray ionization-tandem mass spectrometry: evidence and tags to distinguish different glycosaminoglycans. Anal Biochem, 2014. 465: p. 63-9.