1 Consortium, I. H. G. S. Initial sequencing and analysis of the human genome. Nature 409, 860, (2001).
2 Roh, T.-y., Ngau, W. C., Cui, K., Landsman, D. & Zhao, K. High-resolution genome-wide mapping of histone modifications. Nat. Biotechnol. 22, 1013, (2004).
3 Roh, T.-Y., Cuddapah, S. & Zhao, K. Active chromatin domains are defined by acetylation islands revealed by genome-wide mapping. Genes & development 19, 542-552, (2005).
4 Bernstein, B. E. et al. A bivalent chromatin structure marks key developmental genes in embryonic stem cells. Cell 125, 315-326, (2006).
5 Barski, A. et al. High-resolution profiling of histone methylations in the human genome. Cell 129, 823-837, (2007).
6 Consortium, E. P. The ENCODE (ENCyclopedia of DNA elements) project. Science 306, 636-640, (2004).
7 Birney, E. et al. Identification and analysis of functional elements in 1% of the human genome by the ENCODE pilot project. Nature 447, 799-816, (2007).
8 Pennisi, E. ENCODE Project Writes Eulogy For Junk DNA. Science 337, 1159-1161, (2012).
9 Lieberman-Aiden, E. et al. Comprehensive mapping of long-range interactions reveals folding principles of the human genome. Science 326, 289-293, (2009).
10 Fullwood, M. J. et al. An oestrogen-receptor-α-bound human chromatin interactome. Nature 462, 58, (2009).
11 Rao, Suhas S. P. et al. A 3D Map of the Human Genome at Kilobase Resolution Reveals Principles of Chromatin Looping. Cell 159, 1665-1680, (2014).
12 Mumbach, M. R. et al. HiChIP: efficient and sensitive analysis of protein-directed genome architecture. Nat Meth 13, 919-922, (2016).
13 Mumbach, M. R. et al. Enhancer connectome in primary human cells identifies target genes of disease-associated DNA elements. Nat Genet advance online publication, (2017).
14 Goldberg, A. D., Allis, C. D. & Bernstein, E. Epigenetics: a landscape takes shape. Cell 128, 635-638, (2007).
15 Orlando, David A. et al. Quantitative ChIP-Seq Normalization Reveals Global Modulation of the Epigenome. Cell Reports 9, 1163-1170, (2014).
16 Roadmap Epigenomics, C. et al. Integrative analysis of 111 reference human epigenomes. Nature 518, 317-330, (2015).
17 Lai, B. et al. Trac-looping measures genome structure and chromatin accessibility. Nature Methods 15, 741-747, (2018).
18 Nishimura, K., Fukagawa, T., Takisawa, H., Kakimoto, T. & Kanemaki, M. An auxin-based degron system for the rapid depletion of proteins in nonplant cells. Nature methods 6, 917, (2009).
19 Tan, X. et al. Mechanism of auxin perception by the TIR1 ubiquitin ligase. Nature 446, 640, (2007).
20 Nabet, B. et al. The dTAG system for immediate and target-specific protein degradation. Nat. Chem. Biol. 14, 431, (2018).
21 Pogo, B., Allfrey, V. & Mirsky, A. RNA synthesis and histone acetylation during the course of gene activation in lymphocytes. Proceedings of the National Academy of Sciences 55, 805-812, (1966).
22 Durand, N. C. et al. Juicebox Provides a Visualization System for Hi-C Contact Maps with Unlimited Zoom. Cell Systems 3, 99-101, (2016).
23 Kidder, B. L. & Zhao, K. in Stem Cell Transcriptional Networks 3-20 (Springer, 2014).
24 Durand, N. C. et al. Juicer Provides a One-Click System for Analyzing Loop-Resolution Hi-C Experiments. Cell Systems 3, 95-98, (2016).
25 Stansfield, J. C., Cresswell, K. G., Vladimirov, V. I. & Dozmorov, M. G. HiCcompare: an R-package for joint normalization and comparison of HI-C datasets. BMC Bioinformatics 19, 279, (2018).