1 Rennie, E. A. & Turgeon, R. A comprehensive picture of phloem loading strategies. Proc Natl Acad Sci USA 106, 14162-14167 (2009).
2 Turgeon, R. Phloem loading and plasmodesmata. Trends Plant Sci 1, 418-423 (1996).
3 Hu, L. P. et al. Phloem unloading follows an extensive apoplasmic pathway in cucumber (Cucumis sativus L.) fruit from anthesis to marketable maturing stage. Plant Cell Environ 34, 1835-1848 (2011).
4 Gross, K. C. & Pharr, D. M. A potential pathway for galactose metabolism in Cucumis sativus L, a stachyose transporting species. Plant Physiol 69, 117-121 (1982).
5 Gardner, R. C. Gene-transfer into tropical and tubtropical crops. Sci Hortic 55, 65-82 (1993).
6 Wei, Q. Z. et al. Rapid identification of fruit length loci in cucumber (Cucumis sativus L.) using next-generation sequencing (NGS)-based QTL analysis. Sci Rep 6 (2016).
7 Yuan, X. J. et al. Genetic mapping and QTL analysis of fruit and flower related traits in cucumber (Cucumis sativus L.) using recombinant inbred lines. Euphytica 164, 473-491 (2008).
8 Trulson, A. J., Simpson, R. B. & Shahin, E. A. Transformation of cucumber (Cucumis sativus L.) plants with Agrobacterium rhizogenes. Theor Appl Genet 73, 11-15 (1986).
9 Kose, E. & Koç, N. K. Agrobacterium-mediated transformation of cucumber (Cucumis Sativus L.) and plant regeneration. Biotechnol Biotec Eq 17, 56-62 (2003).
10 He, Z. Q. et al. Mannose selection system used for cucumber transformation. Plant Cell Rep 25, 953-958 (2006).
11 Selvaraj, N. et al. Evaluation of green fluorescent protein as a reporter gene and phosphinothricin as the selective agent for achieving a higher recovery of transformants in cucumber (Cucumis sativus L. cv. Poinsett76) via Agrobacterium tumefaciens. In Vitro Cell Dev Biol 46, 329-337 (2010).
12 Nanasato, Y., Konagaya, K., Okuzaki, A., Tsuda, M. & Tabei, Y. Improvement of Agrobacterium-mediated transformation of cucumber (Cucumis sativus L.) by combination of vacuum infiltration and co-cultivation on filter paper wicks. Plant Biotechnol Rep 7, 267-276 (2013).
13 Vengadesan, G., Anand, R. P., Selvaraj, N., Perl-Treves, R. & Ganapathi, A. Transfer and expression of nptII and bar genes in cucumber (Cucumis sativus L.). In Vitro Cell Dev Biol 41, 17-21 (2005).
14 Nishibayashi, S., Kaneko, H. & Hayakawa, T. Transformation of cucumber (Cucumis sativus L.) plants using Agrobacterium tumefaciens and regeneration from hypocotyl explants. Plant Cell Rep 15, 809-814 (1996).
15 Punja, Z. K., Abbas, N., Sarmento, G. G. & Tang, F. A. Regeneration of Cucumis sativus var. hardwickii, C. melo, and C. metuliferus from explants through somatic embryogenesis and organogenesis. Plant Cell Tiss Org 21, 93-102 (1990).
16 Raharjo, S. H. T., Hernandez, M. O., Zhang, Y. Y. & Punja, Z. K. Transformation of pickling cucumber with chitinase-encoding genes using Agrobacterium tumefaciens. Plant Cell Rep 15, 591-596 (1996).
17 Lou, H. & Kako, S. Somatic embryogenesis and plant regeneration in cucumber. Hortscience 29, 906-909 (1994).
18 Colijnhooymans, C. M., Bouwer, R., Orczyk, W. & Dons, J. J. M. Plant regeneration from cucumber (Cucumis sativus) protoplasts. Plant Sci 57, 63-71 (1988).
19 Wehner, T. C. & Locy, R. D. In vitro adventitious shoot and root formation of cultivars and lines of cucumis sativus L. Hortscience 16, 759-760 (1981).
20 Schulze, J. et al. Biolistic transformation of cucumber using embryogenic suspension cultures: long-term expression of reporter genes. Plant Sci 112, 197-206 (1995).
21 Wang, S. L. et al. Current status of genetic transformation technology developed in cucumber (Cucumis sativus L.). J Integr Agr 14, 469-482 (2015).
22 Chee, P. P. Transformation of Cucumis sativus tissue by Agrobacterium tumefaciens and the regeneration of transformed plants. Plant Cell Rep 9, 245-248 (1990).
23 Lin, Y. T. et al. In Vitro regeneration and genetic tansformation of cucumis metuliferus through cotyledon organogenesis. Hortscience 46, 616-621 (2011).
24 Rajagopalan, P. A. & Perl-Treves, R. Improved cucumber transformation by a modified explant dissection and selection protocol. Hortscience 40, 431-435 (2005).
25 Cheng, J. T. et al. Down-regulating CsHT1, a cucumber pollen specific hexose transporter, inhibits pollen germination, tube growth, and seed development. Plant Physiol 168, 635-647 (2015).
26 Wang, H. Y. et al. Antisense suppression of cucumber (Cucumis sativus L.) sucrose synthase 3 (CsSUS3) reduces hypoxic stress tolerance. Plant Cell Environ 37, 795-810 (2014).
27 Ding, L. et al. HANABA TARANU regulates the shoot apical meristem and leaf development in cucumber (Cucumis sativus L.). J Exp Bot 66, 7075-7087 (2015).
28 Chen, C. H. et al. The WD-repeat protein CsTTG1 regulates fruit wart formation through interaction with the homeodomain-leucine zipper I protein Mict. Plant Physiol 171, 1156-1168 (2016).
29 Liu, B. et al. Silencing of the gibberellin receptor homolog, CsGID1a, affects locule formation in cucumber (Cucumis sativus) fruit. New Phytol 210, 551-563 (2016).
30 Wang, W. J. et al. Cucumis sativus L. WAX2 plays a pivotal role in wax biosynthesis, influencing pollen fertility and plant biotic and abiotic stress responses. Plant Cell Physiol 56, 1339-1354 (2015).
31 Wang, W. J. et al. Cucumber ECERIFERUM1 (CsCER1), which influences the cuticle properties and drought tolerance of cucumber, plays a key role in VLC alkanes biosynthesis. Plant Mol Biol 87, 219-233 (2015).
32 Zhang, Y. et al. A GAMYB homologue CsGAMYB1 regulates sex expression of cucumber via an ethylene independent pathway. J Exp Bot 65, 3201-3213 (2014).
33 Lu, J. et al. Suppression of cucumber stachyose synthase gene (CsSTS) inhibits phloem loading and reduces low temperature stress tolerance. Plant Mol Biol, doi:10.1007/s11103-017-0621-9 (2017).
34 Hallmann, J., Quadt-Hallmann, A., Rodrı́guez-Kábana, R. & Kloepper, J. W. Interactions between Meloidogyne incognita and endophytic bacteria in cotton and cucumber. Soil Biology and Biochemistry 30, 925-937 (1998).
35 Yan, X., Huang, L. L., Tu, X., Gao, X. N. & Kang, Z. S. Saccharothrix yanglingensis sp. nov., an antagonistic endophytic actinomycete isolated from cucumber plant. Antonie van Leeuwenhoek 101 (2012).
36 Wang, J. et al. Agrobacterium-mediated transformation of cucumber (Cucumis sativus L.) using a sense mitogen-activated protein kinase gene (CsNMAPK). Plant Cell Tiss Org 113, 269-277 (2013).
37 Tabei, Y. et al. Transgenic cucumber plants harboring a rice chitinase gene exhibit enhanced resistance to gray mold (Botrytis cinerea). Plant Cell Rep 17, 159-164 (1998).
38 Sarmento, G. G., Alpert, K., Tang, F. A. & Punja, Z. K. Factors influencing Agrobacterium-tumefaciens mediated transformation and expression of kanamycin resistance in pickling Cucumber. Plant Cell Tiss Org 31, 185-193 (1992).
39 Ganapathi, A. & Perl-Treves, R. Agrobacterium-mediated transformation in Cucumis sativus via direct organogenesis. Acta Hortic 510, 405-408 (2000).
40 Lodhi, M. A. , Ye, G. N., Weeden, N. F., Reisch, B. I. A simple and efficient method for DNA extraction from grapevine cultivars, Vitis species and Ampelopsis. Plant Mol Biol Rep. 12, 6-13 (1994).