1 Yates, L. A., Norbury, C. J. & Gilbert, R. J. The long and short of microRNA. Cell 153, 516-519, doi:10.1016/j.cell.2013.04.003 (2013).
2 Reinhart, B. J. et al. The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans. Nature 403, 901-906, doi:10.1038/35002607 (2000).
3 Lin, S. & Gregory, R. I. MicroRNA biogenesis pathways in cancer. Nat. Rev. Cancer 15, 321-333, doi:10.1038/nrc3932 (2015).
4 Stylianopoulos, T. & Jain, R. K. Combining two strategies to improve perfusion and drug delivery in solid tumors. Proc Natl Acad Sci U S A 110, 18632-18637, doi:10.1073/pnas.1318415110 (2013).
5 Moller, H. G. et al. A systematic review of microRNA in glioblastoma multiforme: micro-modulators in the mesenchymal mode of migration and invasion. Mol. Neurobiol. 47, 131-144, doi:10.1007/s12035-012-8349-7 (2013).
6 Schneider, M. R. MicroRNAs as novel players in skin development, homeostasis and disease. Br. J. Dermatol. 166, 22-28, doi:10.1111/j.1365-2133.2011.10568.x (2012).
7 Zheng, D. et al. Topical delivery of siRNA-based spherical nucleic acid nanoparticle conjugates for gene regulation. Proceedings of the National Academy of Sciences of the United States of America 109, 11975-11980, doi:10.1073/pnas.1118425109 (2012).
8 Trang, P. et al. Regression of murine lung tumors by the let-7 microRNA. Journal of Thoracic Oncology 5, S234-S234 (2010).
9 Aleksandrowicz, E. & Herr, I. Ethical euthanasia and short-term anesthesia of the chick embryo. ALTEX 32, 143-147, doi:http://dx.doi.org/10.14573/altex.1410031 (2015).
10 Bauer, N., Liu, L., Aleksandrowicz, E. & Herr, I. Establishment of hypoxia induction in an in vivo animal replacement model for experimental evaluation of pancreatic cancer. Oncol. Rep. 32, 153-158, doi:10.3892/or.2014.3196 (2014).
11 Labsch, S. et al. Sulforaphane and TRAIL induce a synergistic elimination of advanced prostate cancer stem-like cells. Int. J. Oncol. 44, 1470-1480, doi:10.3892/ijo.2014.2335 (2014).
12 Liu, L. et al. Enrichment of c-Met(+) tumorigenic stromal cells of giant cell tumor of bone and targeting by cabozantinib. Cell Death Dis 5, e1471, doi:10.1038/cddis.2014.440 (2014).
13 Liu, L. et al. Triptolide reverses hypoxia-induced EMT and stem-like features in pancreatic cancer by NF-kappa B downregulation. Int. J. Cancer 134, 2489-2503 (2014).
14 Fan, P. et al. MicroRNA-101-3p reverses gemcitabine resistance by inhibition of ribonucleotide reductase M1 in pancreatic cancer. Cancer Lett. 373, 130-137, doi:10.1016/j.canlet.2016.01.038 (2016).
15 Fan, P. et al. Continuous exposure of pancreatic cancer cells to dietary bioactive agents does not induce drug resistance unlike chemotherapy. Cell Death Dis 7, e2246, doi:10.1038/cddis.2016.157 (2016).
16 Heller, A. et al. Establishment and Characterization of a Novel Cell Line, ASAN-PaCa, Derived From Human Adenocarcinoma Arising in Intraductal Papillary Mucinous Neoplasm of the Pancreas. Pancreas 45, 1452-1460, doi:10.1097/MPA.0000000000000673 (2016).
17 Isayev, O. et al. Inhibition of glucose turnover by 3-bromopyruvate counteracts pancreatic cancer stem cell features and sensitizes to gemcitabine. Oncotarget 5, 5177 (2014).
18 Nwaeburu, C. C. et al. Up-regulation of microRNA Let-7c by quercetin inhibits pancreatic cancer progression by activation of Numbl. Oncotarget 7, 58367-58380 (2016).
19 Zhang, Y. et al. Aspirin counteracts cancer stem cell features, desmoplasia and gemcitabine resistance in pancreatic cancer. Oncotarget 6, 9999-10015 (2015).
20 Amponsah, P. S. et al. microRNA-210 overexpression inhibits tumor growth and potentially reverses gemcitabine resistance in pancreatic cancer. Cancer Lett. 388, 107-117, doi:10.1016/j.canlet.2016.11.035 (2017).
21 Weber, W. T. & Mausner, R. Migration patterns of avian embryonic bone marrow cells and their differentiation to functional T and B cells. Adv. Exp. Med. Biol. 88, 47-59 (1977).
22 Ribatti, D. The chick embryo chorioallantoic membrane in the study of tumor angiogenesis. Romanian Journal of Morphology and Embryology 49, 131-135 (2008).
23 Ribatti, D. The chick embryo chorioallantoic membrane as a model for tumor biology. Exp. Cell Res. 328, 314-324, doi:10.1016/j.yexcr.2014.06.010 (2014).
24 Ribatti, D., Nico, B., Vacca, A. & Presta, M. The gelatin sponge-chorioallantoic membrane assay. Nat Protoc 1, 85-91, doi:nprot.2006.13 [pii] 10.1038/nprot.2006.13 (2006).
25 Lindgren, I., Zoer, B., Altimiras, J. & Villamor, E. Reactivity of chicken chorioallantoic arteries, avian homologue of human fetoplacental arteries. J Physiol Pharmacol 61, 619-628 (2010).
26 Murphy, J. B. Transplantability of malignant tumors to the embryos of a foreign species. JAMA 59, 874 (1912).
27 Dagg, C. P., Karnofsky, D. A. & Roddy, J. Growth of transplantable human tumors in the chick embryo and hatched chick. Cancer Res. 16, 589-594 (1956).
28 DeRose, Y. S. et al. Tumor grafts derived from women with breast cancer authentically reflect tumor pathology, growth, metastasis and disease outcomes. Nat. Med. 17, 1514-1520, doi:nm.2454 [pii]
10.1038/nm.2454 (2011).
29 Rubio-Viqueira, B. et al. An in vivo platform for translational drug development in pancreatic cancer. Clin. Cancer. Res. 12, 4652-4661, doi:12/15/4652 [pii]
10.1158/1078-0432.CCR-06-0113 (2006).
30 Jimeno, A. et al. A direct pancreatic cancer xenograft model as a platform for cancer stem cell therapeutic development. Mol. Cancer Ther. 8, 310-314, doi:1535-7163.MCT-08-0924 [pii]
10.1158/1535-7163.MCT-08-0924 (2009).
31 Hidalgo, M. et al. A pilot clinical study of treatment guided by personalized tumorgrafts in patients with advanced cancer. Mol. Cancer Ther. 10, 1311-1316, doi:10.1158/1535-7163.MCT-11-0233 (2011).
32 McCain, E. R. & McLaughlin, J. S. in Tested studies for laboratory teaching Vol. 20 (ed S. J. Karcher) 85-100 (1999).
33 Balke, M. et al. A short-term in vivo model for giant cell tumor of bone. BMC Cancer 11, 241, doi:10.1186/1471-2407-11-241 (2011).