Spillantini, M. G., Schmidt, M. L., Lee, V. M., Trojanowski, J. Q., Jakes, R., Goedert, M. α-synuclein in Lewy bodies. Nature 388, 839-840 (1997).
Clayton, D. F., George, J. M. The synucleins: a family of proteins involved in synaptic function, plasticity, neurodegeneration and disease. Trends Neurosci. 21, 249-254 (1998).
Linse, S., et al. Nucleation of protein fibrillation by nanoparticles. Proc. Natl. Acad. Sci. U. S. A. 104, 8691-8696 (2007).
Giehm, L., Otzen, D. E. Strategies to increase the reproducibility of protein fibrillization in plate reader assays. Anal. Biochem. 400, 270-281 (2010).
Giehm, L., Lorenzen, N., Otzen, D. E. Assays for α-synuclein aggregation. Methods 53, 295-305 (2011).
Hamada, D., Dobson, C. M. A kinetic study of β-lactoglobulin amyloid fibril formation promoted by urea. Protein Sci. 11, 2417-2426 (2002).
Krebs, M. R., et al. Formation and seeding of amyloid fibrils from wild-type hen lysozyme and a peptide fragment from the β-domain. J. Mol. Biol. 300, 541-549 (2000).
Fandrich, M., Fletcher, M. A., Dobson, C. M. Amyloid fibrils from muscle myoglobin. Nature 410, 165-166 (2001).
Pertinhez, T. A., et al. Amyloid fibril formation by a helical cytochrome. FEBS Lett. 495, 184-186 (2001).
Chiti, F., Bucciantini, M., Capanni, C., Taddei, N., Dobson, C. M., Stefani, M. Solution conditions can promote formation of either amyloid protofilaments or mature fibrils from the HypF N-terminal domain. Protein Sci. 10, 2541-2547 (2001).
Damaschun, G., et al. Conversion of yeast phosphoglycerate kinase into amyloid-like structure. Proteins 39, 204-211 (2000).
Kirkitadze, M. D., Condron, M. M., Teplow, D. B. Identification and characterization of key kinetic intermediates in amyloid β protein fibrillogenesis. J. Mol. Biol. 312, 1103-1119 (2001).
Ghosh, D., et al. Structure based aggregation studies reveal the presence of helix-rich intermediate during α-Synuclein aggregation. Sci. Rep. 5, 9228 (2015).
Conway, K. A., Harper, J. D., Lansbury, P. T., Jr. Fibrils formed in vitro from α-synuclein and two mutant forms linked to Parkinson's disease are typical amyloid. Biochemistry 39, 2552-2563 (2000).
Antony, T., Hoyer, W., Cherny, D., Heim, G., Jovin, T. M., Subramaniam, V. Cellular polyamines promote the aggregation of α-synuclein. J. Biol. Chem. 278, 3235-3240 (2003).
Fernandez, C. O., et al. NMR of α-synuclein-polyamine complexes elucidates the mechanism and kinetics of induced aggregation. EMBO J. 23, 2039-2046 (2004).
Cohlberg, J. A., Li, J., Uversky, V. N., Fink, A. L. Heparin and other glycosaminoglycans stimulate the formation of amyloid fibrils from α-synuclein in vitro. Biochemistry 41, 1502-1511 (2002).
Rasia, R. M., et al. Structural characterization of copper(II) binding to α-synuclein: Insights into the bioinorganic chemistry of Parkinson's disease. Proc. Natl. Acad. Sci. U. S. A. 102, 4294-4299 (2005).
Uversky, V. N., Li, J., Fink, A. L. Pesticides directly accelerate the rate of α-synuclein fibril formation: a possible factor in Parkinson's disease. FEBS Lett. 500, 105-108 (2001).
Volles, M. J., Lansbury, P. T., Jr. Zeroing in on the pathogenic form of α-synuclein and its mechanism of neurotoxicity in Parkinson's disease. Biochemistry 42, 7871-7878 (2003).
Ghosh, D., et al. The Parkinson's disease-associated H50Q mutation accelerates α-Synuclein aggregation in vitro. Biochemistry 52, 6925-6927 (2013).
LeVine, H., 3rd. Quantification of β-sheet amyloid fibril structures with thioflavin T. Methods Enzymol. 309, 274-284 (1999).