1 Lee, D. I. et al. Phosphodiesterase 9A controls nitric-oxide-independent cGMP and hypertrophic heart disease. Nature 519, 472-476, doi:10.1038/nature14332 (2015).
2 Agnetti, G., Husberg, C. & Van Eyk, J. E. Divide and conquer: the application of organelle proteomics to heart failure. Circulation research 108, 512-526, doi:10.1161/CIRCRESAHA.110.226910 (2011).
3 Blume-Jensen, P. & Hunter, T. Oncogenic kinase signalling. Nature 411, 355-365, doi:10.1038/35077225 (2001).
4 Graves, J. D. & Krebs, E. G. Protein phosphorylation and signal transduction. Pharmacology & therapeutics 82, 111-121 (1999).
5 Hunter, T. Signaling--2000 and beyond. Cell 100, 113-127 (2000).
6 Hunter, T. Protein kinases and phosphatases: the yin and yang of protein phosphorylation and signaling. Cell 80, 225-236 (1995).
7 Katsogiannou, M., Andrieu, C. & Rocchi, P. Heat shock protein 27 phosphorylation state is associated with cancer progression. Frontiers in genetics 5, 346, doi:10.3389/fgene.2014.00346 (2014).
8 Hussain, H. A. & Harvey, A. J. Evolution of breast cancer therapeutics: Breast tumour kinase's role in breast cancer and hope for breast tumour kinase targeted therapy. World journal of clinical oncology 5, 299-310, doi:10.5306/wjco.v5.i3.299 (2014).
9 Tasian, S. K., Teachey, D. T. & Rheingold, S. R. Targeting the PI3K/mTOR Pathway in Pediatric Hematologic Malignancies. Frontiers in oncology 4, 108, doi:10.3389/fonc.2014.00108 (2014).
10 Kirk, J. A. et al. Cardiac resynchronization sensitizes the sarcomere to calcium by reactivating GSK-3beta. The Journal of clinical investigation 124, 129-138, doi:10.1172/JCI69253 (2014).
11 Herren, A. W. et al. CaMKII phosphorylation of Na1.5: novel in vitro sites identified by mass spectrometry and reduced S516 phosphorylation in human heart failure. Journal of proteome research, doi:10.1021/acs.jproteome.5b00107 (2015).
12 Schechter, M. A. et al. Phosphoproteomic profiling of human myocardial tissues distinguishes ischemic from non-ischemic end stage heart failure. PLoS One 9, e104157, doi:10.1371/journal.pone.0104157 (2014).
13 Deng, N. et al. Phosphoproteome analysis reveals regulatory sites in major pathways of cardiac mitochondria. Molecular & cellular proteomics : MCP 10, M110 000117, doi:10.1074/mcp.M110.000117 (2011).
14 Ficarro, S. B. et al. Phosphoproteome analysis by mass spectrometry and its application to Saccharomyces cerevisiae. Nature biotechnology 20, 301-305, doi:10.1038/nbt0302-301 (2002).
15 Gruhler, A. et al. Quantitative phosphoproteomics applied to the yeast pheromone signaling pathway. Molecular & cellular proteomics : MCP 4, 310-327, doi:10.1074/mcp.M400219-MCP200 (2005).
16 Larsen, M. R., Thingholm, T. E., Jensen, O. N., Roepstorff, P. & Jorgensen, T. J. Highly selective enrichment of phosphorylated peptides from peptide mixtures using titanium dioxide microcolumns. Molecular & cellular proteomics : MCP 4, 873-886, doi:10.1074/mcp.T500007-MCP200 (2005).
17 Thingholm, T. E., Jensen, O. N., Robinson, P. J. & Larsen, M. R. SIMAC (sequential elution from IMAC), a phosphoproteomics strategy for the rapid separation of monophosphorylated from multiply phosphorylated peptides. Molecular & cellular proteomics : MCP 7, 661-671, doi:10.1074/mcp.M700362-MCP200 (2008).
18 Eng, J. K., McCormack, A. L. & Yates, J. R. An approach to correlate tandem mass spectral data of peptides with amino acid sequences in a protein database. Journal of the American Society for Mass Spectrometry 5, 976-989, doi:10.1016/1044-0305(94)80016-2 (1994).
19 Perkins, D. N., Pappin, D. J., Creasy, D. M. & Cottrell, J. S. Probability-based protein identification by searching sequence databases using mass spectrometry data. Electrophoresis 20, 3551-3567, doi:10.1002/(SICI)1522-2683(19991201)20:18<3551::AID-ELPS3551>3.0.CO;2-2 (1999).
20 Fenyo, D. & Beavis, R. C. A method for assessing the statistical significance of mass spectrometry-based protein identifications using general scoring schemes. Analytical chemistry 75, 768-774 (2003).
21 Geer, L. Y. et al. Open mass spectrometry search algorithm. Journal of proteome research 3, 958-964, doi:10.1021/pr0499491 (2004).
22 Beausoleil, S. A., Villen, J., Gerber, S. A., Rush, J. & Gygi, S. P. A probability-based approach for high-throughput protein phosphorylation analysis and site localization. Nature biotechnology 24, 1285-1292, doi:10.1038/nbt1240 (2006).
23 Suni, V., Imanishi, S. Y., Maiolica, A., Aebersold, R. & Corthals, G. L. Confident Site Localization Using a Simulated Phosphopeptide Spectral Library. Journal of proteome research, doi:10.1021/acs.jproteome.5b00050 (2015).
24 Taus, T. et al. Universal and confident phosphorylation site localization using phosphoRS. Journal of proteome research 10, 5354-5362, doi:10.1021/pr200611n (2011).