Ultra-low-input native ChIP-seq for rare cell populations
Combined chromatin immunoprecipitation and next generation sequencing (ChIP-seq) has become an extremely popular method to generate genome-wide epigenetic profiles from numerous cell lines and tissue types. Typical ChIP-seq experiments require large number of cells, making them ill-adapted to the study of rare cell populations. This procedure describes an ultra-low-input (ULI) micrococcal nuclease-based native ChIP (NChIP) and sequencing library construction method to generate genome-wide chromatin profiles from as few as 103 cells (Brind’Amour et al., 10.1038/ncomms7033). In addition, ULI-NChIP-seq has been validated in vivo, by generation of H3K9me3 and H3K27me3 profiles from E13.5 primordial germ cells isolated from single embryos (Liu, Brind’Amour et al., 10.1101/gad.244848.114).
ULI-NChIP-seq should be useful to generate high quality and complexity libraries from rare cell populations, allowing to decrease colony breeding size or to analyze rare clinical samples. Due to often variable cell numbers obtained during isolation of in vivo cell population, the procedure described here allows for flexibility, with some suggestions on adaptation of buffer or volume conditions at various points during the procedure.
Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Posted 27 Jan, 2015
Ultra-low-input native ChIP-seq for rare cell populations
Posted 27 Jan, 2015
Combined chromatin immunoprecipitation and next generation sequencing (ChIP-seq) has become an extremely popular method to generate genome-wide epigenetic profiles from numerous cell lines and tissue types. Typical ChIP-seq experiments require large number of cells, making them ill-adapted to the study of rare cell populations. This procedure describes an ultra-low-input (ULI) micrococcal nuclease-based native ChIP (NChIP) and sequencing library construction method to generate genome-wide chromatin profiles from as few as 103 cells (Brind’Amour et al., 10.1038/ncomms7033). In addition, ULI-NChIP-seq has been validated in vivo, by generation of H3K9me3 and H3K27me3 profiles from E13.5 primordial germ cells isolated from single embryos (Liu, Brind’Amour et al., 10.1101/gad.244848.114).
ULI-NChIP-seq should be useful to generate high quality and complexity libraries from rare cell populations, allowing to decrease colony breeding size or to analyze rare clinical samples. Due to often variable cell numbers obtained during isolation of in vivo cell population, the procedure described here allows for flexibility, with some suggestions on adaptation of buffer or volume conditions at various points during the procedure.
Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
© Research Square 2021