Deegan, O., Walshe, K., Kavanagh, K. & Doyle, S. Quantitative detection of C-reactive protein using phosphocholine-labelled enzyme or microspheres. Anal. Biochem. 312, 175-181 (2003).
Kumar, D. & Prasad, B. B. Multiwalled carbon nanotubes embedded molecularly imprinted polymer-modified screen printed carbon electrode for the quantitative analysis of C-reactive protein. Sensor Actuat. B-Chem. 171, 1141-1150 (2012).
Islam, M. S. & Kang, S. H. Chemiluminescence detection of label-free C-reactive protein based on catalytic activity of gold nanoparticles. Talanta 84, 752-758 (2011).
Islam, M. S., Lee, H. G., Choo, J., Song, J. M. & Kang, S. H. High sensitive detection of C-reactive protein by total internal reflection fluorescence microscopy on rapidly making nanoarray protein chip. Talanta 81, 1402-1408 (2010).
Islam, M. S., Yu, H., Lee, H. G. & Kang, S. H. Molecular switching fluorescence based high sensitive detection of label-free C-reactive protein on biochip. Biosens. Bioelectron. 26, 1028-1035 (2010).
Shiesh, S. C., Chou, T. C., Lin, X. Z. & Kao, P. C. Determination of C-reactive protein with an ultra-sensitivity immunochemiluminometric assay. J. Immunol. Methods 311, 87-95 (2006).
Lee, W. B., Chen, Y. H., Lin, H. I., Shiesh, S. C. & Lee, G. B. An integrated microfluidic system for fast, automatic detection of C-reactive protein. Sensor Actuat. B-Chem. 157, 710-721 (2011).
Baldini, F., Carloni, A., Giannetti, A., Porro, G. & Trono, C. An optical PMMA biochip based on fluorescence anisotropy: Application to C-reactive protein assay. Sensor Actuat. B-Chem. 139, 64-68 (2009).
Ahn, J. S. et al. Development of a point-of-care assay system for high-sensitivity C-reactive protein in whole blood. Clin. Chim. Acta 332, 51-59 (2003).
Lee, J. H. et al. Label free novel electrical detection using micromachined PZT monolithic thin film cantilever for the detection of C-reactive protein. Biosens. Bioelectron. 20, 269-275 (2004).
Kjelgaard-Hansen, M., Martinez-Subiela, S., Petersen, H. H., Jensen, A. L. & Ceron, J. J. Evaluation and comparison of two immunoturbidimetric assays for the heterologous determination of porcine serum C-reactive protein. Veterinary J. 173, 571-577 (2007).
Aguiar, M., Masse, R. & Gibbs, B. F. Mass spectrometric quantitation of C-reactive protein using labeled tryptic peptides. Anal. Biochem. 354, 175-181 (2006).
Kushner, I. & Somerville, J. A. Estimation of the molecular size of C-reactive protein and CX-reactive protein in serum. Biochim. Biophys. Acta 207, 105-114 (1970).
Kim, H. C. et al. Detection of C-reactive protein on a functional poly(thiophene) self-assembled monolayer using surface plasmon resonance. Ultramicroscopy 108, 1379-1383 (2008).
Kim, N., Kim, D. K. & Cho, Y. J. Development of indirect-competitive quartz crystal microbalance immunosensor for C-reactive protein. Sensor Actuat. B-Chem. 143, 444-448 (2009).
Algarra, M. et al. Thiolated DAB dendrimer/ZnSe nanoparticles for C-reactive protein recognition in human serum. Talanta 99, 574-579 (2012).
Bryan, T., Luo, X., Bueno, P. R. & Davis, J. J. An optimised electrochemical biosensor for the label-free detection of C-reactive protein in blood. Biosens. Bioelectron. 39, 94-98 (2013).
Koskinen, J. O. et al. Fluorescent nanoparticles as labels for immunometric assay of C-reactive protein using two-photon excitation assay technology. Anal. Biochem. 328, 210-218 (2004).
Choi, H. W., Sakata, Y., Kurihara, Y., Ooya, T. & Takeuchi, T. Label-free detection of C-reactive protein using reflectometric interference spectroscopy-based sensing system. Anal. Chim. Acta 728, 64-68 (2012).
Leung, W. et al. InfectCheck CRP barcode-style lateral flow assay for semi-quantitative detection of C-reactive protein in distinguishing between bacterial and viral infections. J. Immunol. Methods 336, 30-36 (2008).
Ibupoto, Z. H., Jamal, N., Khun, K. & Willander, M. Development of a disposable potentiometric antibody immobilized ZnO nanotubes based sensor for the detection of C-reactive protein. Sensor Actuat. B-Chem. 166, 809-814 (2012).
Algarra, M., Gomes, D. & Esteves da Silva, J. C. Current analytical strategies for C-reactive protein quantification in blood. Clin. Chim. Acta 415, 1-9 (2013).
Vermeeren, V. et al. Impedimetric, diamond-based immmunosensor for the detection of C-reactive protein. Sensor Actuat. B-Chem. 157, 130-138 (2011).
Punyadeera, C., Dimeski, G., Kostner, K., Beyerlein, P. & Cooper-White, J. One-step homogeneous C-reactive protein assay for saliva. J. Immunol. Methods 373, 19-25 (2011).
Dixit, C. K., Vashist, S. K., MacCraith, B. D. & O'Kennedy, R. Multisubstrate-compatible ELISA procedures for rapid and high-sensitivity immunoassays. Nat. Protoc. 6, 439-445 (2011).
Dixit, C. K. et al. Development of a high sensitivity rapid sandwich ELISA procedure and its comparison with the conventional approach. Anal. Chem. 82, 7049-7052 (2010).
Vashist, S. K. A sub-picogram sensitive rapid chemiluminescent immunoassay for the detection of human fetuin A. Biosens. Bioelectron. 40, 297-302 (2013).
Vashist, S. K. Graphene-based immunoassay for human lipocalin-2. Anal. Biochem. 446, 96-101 (2014).
Clyne, B. & Olshaker, J. S. The C-reactive protein. J. Emerg. Med. 17, 1019-1025 (1999).
Vashist, S. K. C-Reactive Protein: An Overview. J. Basic Appl. Sci. 9, 496-499 (2013).
Marnell, L., Mold, C. & Du Clos, T. W. C-reactive protein: ligands, receptors and role in inflammation. Clin. Immunol. 117, 104-111 (2005).
Ridker, P. M. High-sensitivity C-reactive protein, inflammation, and cardiovascular risk: from concept to clinical practice to clinical benefit. Am. Heart J. 148, S19-26 (2004).
Dollner, H., Vatten, L. & Austgulen, R. Early diagnostic markers for neonatal sepsis: comparing C-reactive protein, interleukin-6, soluble tumour necrosis factor receptors and soluble adhesion molecules. J. Clin. Epidemiol. 54, 1251-1257 (2001).
Nguyen-Vermillion, A., Juul, S. E., McPherson, R. J. & Ledbetter, D. J. Time course of C-reactive protein and inflammatory mediators after neonatal surgery. J. Pediatr. 159, 121-126 (2011).
Chiesa, C. et al. C reactive protein and procalcitonin: reference intervals for preterm and term newborns during the early neonatal period. Clin. Chim. Acta 412, 1053-1059 (2011).
Chundadze, T. et al. Significantly elevated C-reactive protein serum levels are associated with very high 30-day mortality rates in hospitalized medical patients. Clin. Biochem. 43, 1060-1063 (2010).
Myers, G. L. et al. CDC/AHA Workshop on Markers of Inflammation and Cardiovascular Disease: Application to Clinical and Public Health Practice: report from the laboratory science discussion group. Circulation 110, e545-549 (2004).
Chiesa, C., Panero, A., Osborn, J. F., Simonetti, A. F. & Pacifico, L. Diagnosis of neonatal sepsis: a clinical and laboratory challenge. Clin. Chem. 50, 279-287 (2004).
Tappero, E. & Johnson, P. Laboratory evaluation of neonatal sepsis. Newborn Infant Nurs. Rev. 10, 209-217 (2010).
Kuo, H. K., Yen, C. J., Chen, J. H., Yu, Y. H. & Bean, J. F. Association of cardiorespiratory fitness and levels of C-reactive protein: data from the National Health and Nutrition Examination Survey 1999-2002. Int. J. Cardiol. 114, 28-33 (2007).
Park, H. E. et al. Can C-reactive protein predict cardiovascular events in asymptomatic patients? Analysis based on plaque characterization. Atherosclerosis 224, 201-207 (2012).
Ridker, P. M. High-sensitivity C-reactive protein and cardiovascular risk: rationale for screening and primary prevention. Am. J. Cardiol. 92, 17K-22K (2003).
Sicras-Mainar, A., Rejas-Gutierrez, J., Navarro-Artieda, R. & Blanca-Tamayo, M. C-reactive protein as a marker of cardiovascular disease in patients with a schizophrenia spectrum disorder treated in routine medical practice. Eur. Psychiatry 28, 161-167 (2013).
Wilson, A. M., Ryan, M. C. & Boyle, A. J. The novel role of C-reactive protein in cardiovascular disease: risk marker or pathogen. Int. J. Cardiol. 106, 291-297 (2006).
Lin, M. S. et al. Serum C-reactive protein levels correlates better to metabolic syndrome defined by International Diabetes Federation than by NCEP ATP III in men. Diabetes Res. Clin. Pract. 77, 286-292 (2007).
Morimoto, H. et al. Effect of high-sensitivity C-reactive protein on the development of diabetes as demonstrated by pooled logistic-regression analysis of annual health-screening information from male Japanese workers. Diabetes Metab. 39, 27-33 (2013).
47.Testa, R. et al. C-reactive protein is directly related to plasminogen activator inhibitor type 1 (PAI-1) levels in diabetic subjects with the 4G allele at position -675 of the PAI-1 gene. Nutr. Metab. Cardiovasc. Dis. 18, 220-226 (2008).
Vashist, S. K. et al. One-step kinetics-based immunoassay for the highly-sensitive detection of C-reactive protein in less than 30 minutes. Anal. Biochem. 456, 32-37 (2014).
Dixit, C. K., Vashist, S. K., MacCraith, B. D. & O'Kennedy, R. Evaluation of apparent non-specific protein loss due to adsorption on sample tube surfaces and/or altered immunogenicity. Analyst 136, 1406-1411 (2011).